PySUNDIALS Documentation
Release 2.3.0-rc1

James Dominy

December 29, 2008

CONTENTS

Introduction 3
Installation 5
2.1 PrerequiSites e e e e e e e e 5
2.2 From Source i e e e e e e e e 5
2.3 Binary Installation on Windows L e e e 6
24 Configuration e e e e e e 6
Using PySUNDIALS 7
3.1 Importing PySUNDIALS modules e 7
3.2 NVECIOTS . . o o o o e e e e e e e 7
33 CVODE . . . 9
34 CVODES 10
35 IDA . L e 13
3.6 KINSOL . . . o e 15
Indices and tables 17

PySUNDIALS Documentation, Release 2.3.0-rc1

Contents:

Contents 1

CHAPTER
ONE

Introduction

PySUNDIALS is a python package providing python bindings for the SUNDIALS suite of solvers. It is being de-
veloped by the triple ‘J’ group at Stellenbosch University, South Africa. While python bindings for SUNDIALS will
hopefully be generally useful in the computational scientific community, they are being developed with the specific
aim of providing a robust underlying numerical solver capable of implementing models conforming to the Systems
Biology Markup Language specification (version 2), including triggers, events, and delays. As such the development
process is partially driven by the continuing parallel development of PySCeS.

This documentation serves to introduce and act as a reference for PySUNDIALS. As such it focuses on the differences
in behaviour between PySUNDIALS and SUNDIALS. If you wish to know more about the underlying mathematical
considerations, or wish a more in depth discussion of how to go about using SUNDIALS in general, the SUNDIALS
documentation is the place to start. We assume a basic knowledge of initial value problems and their computational
solutions on the part of the reader.

CHAPTER
TWO

Installation

2.1 Prerequisites

PySUNDIALS requires the following

* a working copy of SUNDIALS installed with shared libraries compiled

¢ Python v2.4 with the ct ypes module, OR Python v2.5 or higher

The python packages numpy and scipy are recommended but not necessary.

2.2 From Source

The latest release version of PySUNDIALS can be download at http://sourceforge.net/projects/pysundials, or alterna-
tively, the very latest (potentially non-functional) version via anonymous svn using the command:

$ svn co https://pysundials.svn.sourceforge.net/svnroot/pysundials pysundials

2.2.1 On Linux/BSD or other POSIX

* Download and untar the complete SUNDIALS suite.

e $./configure -enable-shared

* S make && make install

* Download and untar PySUNDIALS

» Change to the directory where you unpacked PySUNDIALS

e $ python setup.py install

2.2.2 On Windows using MSys/MinGW

* Download and untar the complete SUNDIALS suite somewhere inside MSys.
¢ Do not run aclocal, autoconf, or autoheader, or the makefiles will break!

e $./configure -enable-shared

http://sourceforge.net/projects/pysundials

PySUNDIALS Documentation, Release 2.3.0-rc1

* $ make && make install
* Download and untar PySUNDIALS
* Change to the directory where you unpacked PySUNDIALS

* $ python setup.py —-c¢ mingw32 install

If you receive a compile time error when executing the final command, which complains about missing
sundials_conf.h, or other missing .h files, set the CPATH environment variable to point to the directory con-
taining the sundials include directories, for example:

$ CPATH=/local/include python setup.py -c¢ mingw32 install

Note that using MSys presents unique problems being a hybrid environment. We recommend using MSys only to
compile and install (Py)SUNDIALS, not for use as an environment in which to run PySUNDIALS. Having followed
the above instructions, the SUNDIALS shared libs will be in $MSYSROOT%/usr/local/lib/, and end with
-<digit>.exe. On older versions of MSys/MinGW, the . exe extension may be left off.

2.3 Binary Installation on Windows

2.4 Configuration

PySUNDIALS uses ctypes to link the required SUNDIALS libraries directly into the running python pro-
cess. In order to do this, it needs to know where to find those shared libraries. On Linux/BSD systems,
this is usually auto detected, as library locations are standard, however on windows systems, the final loca-
tion and even naming convention of the shared library files is compiler dependent. If PySUNDIALS can-
not find the SUNDIALS libraries, please locate them yourself, and specify their locations in a file named
~/.pysundials/config (Linux/BSD), or $HOMEPATH% \pysundials\config (Windows). If PySUNDI-
ALS cannot find this configuration file in your home directory, it will seek it in the same directory it was installed in,
i.e. SPYTHONROOT/site—packages/pysundials/config.

In the ‘config’ file, anything following a hash (including the hash itself) is considered a comment. Each line specifies
the location of a required library in the form:

library = path

Where library is one of ¢, aux, nvecserial, nvecparallel, cvode, cvodes, ida, or kinsol, and path
is the complete path of the appropriate library file. ¢, aux, and nvecparallel are optional; the first two being
generally autodetected, and the second only required if you will be using PySUNDIALS in parallel with MPI.

You can find a sample config file for both posix and mingw32 systems in the doc subdirectory of the PySUNDIALS
distribution.

6 Contents

CHAPTER
THREE

Using PySUNDIALS

3.1 Importing PySUNDIALS modules

There are five PyYSUNDIALS modules available for general use; One for each of the SUNDIALS modules, namely
cvode, cvodes, ida, and kinsol. The fifth is the nvecserial module, which you may wish to use in conjuc-
tion with CVODES for it’s convenience functions for dealing with senstivity analysis data structures. To import one
of these modules use:

from pysundials import module_name

where module_name is the name of the module you wish to use.

3.2 NVectors

The fundamental data type of SUNDIALS, and hence PySUNDIALS is the NVector. PySUNDIALS implements
the N'Vector class in a manner that closely resembles a python list. Creating an NVector is a simple case of class
instantiation:

>>> from pysundials import nvecserial
>>> v = nvecserial.NVector([1l, 2, 3])
>>> v

[1.0, 2.0, 3.0]

When instantiating an NVector, simply pass a sequence (tuple, list, numpy array, another NVector, etc...) to the
constuctor. The contents of the sequence determine the length of the N'Vector (which remains immutable for its
lifetime) and the initial value of the N'Vector. N'Vector objects can be subscripted or sliced like normal python lists.:

>>> v[1]
2.0

>>> v[2] = 4
>>> v
[1.0, 2.0
>>> v[0:2
[1.0, 2.0
>>> v[0:2
>>> v
[-1.0, -2.0, 4.0]

Operators act intuitively on N'Vectors too,

PySUNDIALS Documentation, Release 2.3.0-rc1

* + and - perform scalar or vector addition or subtraction respectively, depending on operands.:

>>> w = nvecserial.NVector ([1,2,-41)

>>> v+l
[0.0, -1.0, 5.0]
>>> viw
[0.0, 0.0, 0.0]
>>> v-w

[-2.0, -4.0, 8.0]

¢ * performs scalar or element-wise multiplication depending on operands.:

>>> v*2

[-1.0, -4.0, -16.0]

e / performs scalar or element-wise division depending on opreands.:

>>> v/2

[-0.5, -1.0, 2.0]
>>> v/w

[-1.0, -1.0, -1.0]
>>> v/v

[1.0, 1.0, 1.0]

* and a variety of object methods perform more complex operations including dot product and various norms. See
the reference section for a complete list

An NVector object can be used as a numpy array by using its asarray method. Note how changes to the array affect
the N'Vector and vice versa.:

>>> import numpy

>>> a = v.asarray/()
>>> 3

array([-1., -2., 4.7)
>>> a[0] = 0

>>> 3

array ([0., -2., 4.1)
>>> v

[0.0, -2.0, 4.0]

>>> v[1l] = 0

>>> 3

array ([0., 0., 4.1)

The NVector class is exported to each of the main PySUNDIALS modules, so there is rarely a need to import
nvecserial.:

>>> from pysundials import cvode
>>> v = cvode.NVector([1,2,3])
>>> v

[1.0, 2.0, 3.0]

8 Contents

PySUNDIALS Documentation, Release 2.3.0-rc1

3.3 CVODE

Programs using CVODE will generally conform to a certain skeleton layout. The example used here serves to illus-
trate this skeleton layout, and is neither complete, nor representative of SUNDIALS/PySUNDIALS complete set of
capabilities. Please see the function reference or SUNDIALS documentation for more information.

1. Import the cvode and ctypes modules.:

from pysundials import cvode
import ctypes

2. Define your right-hand side function. This function must take exactly four parameters. The first parameter
will be the current value of the indepedent variable (usually time). The second paramter will be an NVector
containing the current values of the dependent variables. The third parameter is an N'Vector whose elements
must be filled with the new values of the dependent variables. The fourth parameter is a pointer to any arbitrary
user data you may have specified, otherwise None. This function essentially defines your ODE system. For
example, a simple problem consisting of three variables and having the following ODES:

e vl = r2 - rl
e v2 =1rl - r2

e v3 =1l - r3 - r4

(where r i is a function of the independent variable and the current values of the dependent variables) would
have the following RHS function:

def f(t, y, ydot, f_data):

ydot [0] = r2(t,y) - rl(t,y)

ydot[1] = rl(t,y) — r2(t,y)

ydot[2] = rl(t,y) — r3(t,y) - rd(t,y)
return 0

3. Define any optional functions such as a Jacobian approximation, error weight and/or root finding functions. See
function reference for details on parameters and returns.:

def rootfind(t, y, gout, g_data):

gout [0] = y[0] - 0.5
gout[1l] = y[1] - 0.5
return 0

4. Initialise an NVector with the initial conditions.:

y = cvode.NVector ([0.7, 0.3, 0.0])

5. Create a CVODE object.:

cvode_mem = cvode.CVodeCreate (lmm, iter)

(where Imm is on of cvode.CV_ADAMS or cvode.CV_BDF, and iter is one of cvode.CV_NEWTON or
cvode.CV_FUNCTIONAL)

6. Allocate integrator memory, set the initial value of the independent variable, and set tolerances. Absolute
tolerances may be an N'Vector of the same size as y in which case cvode . CV_SV should be used, or a scalar
value applying to all (cvode.CV_SS).:

Contents 9

PySUNDIALS Documentation, Release 2.3.0-rc1

10.

11.

abstol = cvode.NVector ([1.0e-8, 1.0e-14, 1.0e-61])
reltol = cvode.realtype(l.0e-4)
cvode.CVodeMalloc (cvode_mem, £, 0.0, y, cvode.CV_SV, reltol, abstol)

Set any optional inputs using CVSet * ().

Choose a linear solver and set the problem size, i.e. number of variables. The available linear solvers are
CVDense, CVBand, CVDiag, CVSpgmr, CVSpbcg, and CVSpt fgmr.:

cvode.CVDense (cvode_mem, 3)

Set any optional linear solver inputs using cvode .CV<solver>Set *.

Optionally initialise root finding passing the CVODE object, the number of roots to find, a vector of size equal
to the number of roots, and a pointer to any optional user data you want available in your root finding function.
The root finding function should populate a vector of root values, generally using implicit algebraic equations.
If any of those values are zero the integrator pauses, returning cvode . CV_ROOT_RETURN to indicate that at
least one root has been found.:

cvode.CVodeRootInit (cvode_mem, 2, rootfind, None)

Advance the solution in time, calling cvode.CVode for each desired output time step. Each call to
cvode.CVode specifies the desired time for the next stop (tout) and the current conditions (y). On re-
turn, y will contain the new conditions, and t will contain the time at which the integrator stopped. t, which
must be of type realtype and passed into cvode . CVode by reference, can be different from tout if roots
are found, or errors encountered. The last parameter specifies how CVODE should step. See the SUNDIALS
documentation for more details.:

t = cvode.realtype (0)
tout = 0.4
while tout < 0.4x(10x%12):
flag = cvode.CVode (cvode_mem, tout, y, ctypes.byref(t), cvode.CV_NORMAL)
print (t, v)
if flag == cvode.CV_ROOT_RETURN:
rootsfound = cvode.CVodeGetRootInfo (cvode_mem, 2)
print rootsfound
elseif flag == cvode.CV_SUCCESS:
tout *= 10
else:
break

3.4 CVODES

Programs using CVODES will generally conform to a certain skeleton layout very similar to that of CVODE. Our
layout here provides an example for simple calculation of sensitivities using forward sensitivity analysis. CVODES is
capable of adjoint sensitivity analysis to. See the function reference or the SUNDIALS documentation for information
of how to uses these alternative methods.

1.

Import the cvodes module, the nvecserial module, and the ctypes module:

from pysundials import cvodes
import nvecserial
import ctypes

10

Contents

PySUNDIALS Documentation, Release 2.3.0-rc1

2. Define a structure to hold your parameters for which you wish to calculate sensitivites as well as any optional
user data.:

class UserData (ctypes.Structure) :
fields = [
("p’", cvodes.realtypex4)

1
PUserData = ctypes.POINTER (UserData)

3. Define your right-hand side function. This function must take exactly four parameters. The first parameter
will be the current value of the indepedent variable (usually time). The second paramter will be an NVector
containing the current values of the dependent variables. The third parameter is an N'Vector whose elements
must be filled with the new values of the dependent variables. The fourth parameter is a pointer to any arbitrary
user data you may have specified, otherwise None. This function essentially defines your ODE system. For
example, a simple problem consisting of three variables and having the following ODES:

e vl = r2 - rl
e v2 =1rl - r2

e v3 =1l - r3 - r4

(where r i is a function of the independent variable, the current values of the dependent variables and the param-
eter set) would have the following RHS function.:

def f(t, y, ydot, f_data):
data = ctypes.cast (f_data, PUserData) .contents

ydot [0] = r2(t,y,data.p) - rl(t,y,data.p)

ydot[1] = rl(t,y,data.p) - r2(t,y,data.p)

ydot[2] = rl(t,y,data.p) - r3(t,y,data.p) - rd(t,y,data.p)
return 0

4. Define any optional functions such as a Jacobian approximation, error weight and/or root finding functions. See
function reference for details on parameters and returns.:

def rootfind(t, y, gout, g_data):
gout [0] = y[0] - 0.5

gout[1] = y[1] — 0.5
return 0

5. Initialise an N'Vector with the initial conditions.:

y = cvodes.NVector ([0.7, 0.3, 0.0])

6. Create a CVODE object.:

cvode_mem = cvodes.CVodeCreate (lmm, iter)

(where Imm is on of cvodes.CV_ADAMS or cvodes.CV_BDF, and iter is one of cvodes.CV_NEWTON or
cvodes.CV_FUNCTIONAL)

7. Allocate integrator memory, set the initial value of the independent variable, and set tolerances. Absolute
tolerances may be an NVector of the same size as y in which case cvodes . CV_SV should be used, or a scalar
value applying to all (cvodes.CV_SS).:

abstol = cvodes.NVector([1.0e-8, 1.0e-14, 1.0e-6])
reltol = cvodes.realtype(l.0e-4)
cvodes.CVodeMalloc (cvode_mem, £, 0.0, y, cvodes.CV_SV, reltol, abstol)

Contents 11

PySUNDIALS Documentation, Release 2.3.0-rc1

8. Set any optional inputs using CVSet * () .:
cvodes.CVodeSetFdata (cvode_mem, ctypes.pointer (data))

9. Choose a linear solver and set the problem size, i.e. number of variables. The available linear solvers are
CVDense, CVBand, CVDiag, CVSpgmr, CVSpbcg, and CVSpt fgmr.:
cvodes.CVDense (cvode_mem, 3)

10. Set sensitivity system options by first creating an NVectorArray of dimensions v by p, where v is the number of
variables, and p is the number of paramters for which sensitivities will be calculated.:
yS = nvecserial.NVectorArray ([([0]*2)]1x4)

Next call cvodes.CVodeSensMalloc to allocate and initialise required memory for sensitivity analysis,
passing the CVODE object, the number of parameters, the desired method (cvodes.CV_SIMULTANEOUS,
cvodes.CV_STAGGERED, or cvodes.CV_STAGGERED1), and the NVectorArray.:
cvodes.CVodeSensMalloc (cvodes_mem, 4, cvodes.CV_SIMULTANEOUS, vyS)
Next we have to inform CVODES which parameters are going to be used for sensitivity calculations by call-
ing cvodes.CVodeSetSensParams, which expects four parameters (for more detail see p. 111 of the
CVODES user guide).
(a) the cvodes memory object
(b) a pointer to the array of parameter values which MUST be passed through the user data structure (so
CVODES knows where the values are and can peturb them, presumably)
(c) an array (i.e. list) of scaling factors, one for each parameter for which sensitivies are to be determined
(d) an array of integers (either 1 or 0), where a 1 indicates the respective paramter value should be used in
estimating sensistivities
for example:
cvodes.CVodeSetSensParams (cvodes_mem,
data.p, #we have four system parameters (The four VMax’s)
[1]%4, #they should all be scaled by 1, i.e. unscaled,
[11x4 #they all contribute to the estimation of sensitivities
)

11. Set any optional linear solver inputs using cvodes.CV<solver>Set«.

12. Optionally initialise root finding passing the CVODE object, the number of roots to find, a vector of size equal
to the number of roots, and a pointer to any optional user data you want available in your root finding function.
The root finding function should populate a vector of root values, generally using implicit algebraic equations.
If any of those values are zero the integrator pauses, returning cvodes .CV_ROOT_RETURN to indicate that at
least one root has been found.:
cvodes.CVodeRootInit (cvode_mem, 2, g, None)

13. Advance the solution in time, calling cvodes.CVode for each desired output time step. Each call to
cvodes.CVode specifies the desired time for the next stop (tout) and the current conditions (y). On re-
turn, y will contain the new conditions, and t will contain the time at which the integrator stopped. t, which
must be of type realtype and passed into cvodes . CVode by reference, can be different from tout if roots
are found, or errors encountered. The last parameter specifies how CVODE should step. See the SUNDIALS
documentation for more details.:

12 Contents

PySUNDIALS Documentation, Release 2.3.0-rc1

t = cvodes.realtype (0)
tout = 0.4
while tout < 0.4x(10x%12):
flag = cvodes.CVode (cvode_mem, tout, y, ctypes.byref(t), cvodes.CV_NORMAL)
cvodes.CVodeGetSens (cvodes_mem, t, yS)
print (t, vy, yS)
if flag == cvodes.CV_ROOT_RETURN:
rootsfound = cvodes.CVodeGetRootInfo (cvode_mem, 2)
print rootsfound
elseif flag == cvodes.CV_SUCCESS:
tout *= 10
else:
break

3.5 IDA

Programs using IDA will generally conform to a certain skeleton layout. The example used here serves to illustrate this
skeleton layout, and is neither complete, nor representative of SUNDIALS/PySUNDIALS complete set of capabilities.
Please see the function reference or SUNDIALS documentation for more information.

1. Import the ida and ctypes modules.:

from pysundials import ida
import ctypes

2. Define your right-hand side function. This function must take exactly five parameters. The first parameter
will be the current value of the indepedent variable (usually time). The second paramter will be an NVector
containing the current values of the dependent variables. The third parameter will be an N'Vector containing
dy/dt. The fourth parameter is an NVector whose elements must be filled with the new values of the dependent
variables. The fifth parameter is a pointer to any arbitrary user data you may have specified, otherwise None.
This function essentially defines your ODE system, and must do so in implicit form for both differential and
algebraic equations. Additonally, those variables determined by algrebraic realtions should appear strictly after
those determined by differential equations in the dependent variable vector. For example, a simple problem
consisting of three variables and having the following ODES (not the rearrangment to order differential and
algebraic equations correctly compared to previous examples):

e vl = rl - r3 - r4
e v2 = 1r2 - rl

e v3 =rl - r2

(where r i is a function of the independent variable and the current values of the dependent variables) would
have the following RHS function:

def f(t, yy, yp, rr, data):

rr[0] = rl(yy)-r3(yy)-rd(yy)-ypl0]
rr[l] = r2(yy)-rl(yy)-ypll]
rr[2] = yy[l]l+yy[2]-1

return 0O

3. Define any optional functions such as a Jacobian approximation, error weight and/or root finding functions. See
function reference for details on parameters and returns.:

Contents 13

PySUNDIALS Documentation, Release 2.3.0-rc1

def rootfind(t, y, gout, g_data):
gout [0] = y[0] - 0.5
gout[1] = y[1] - 0.5
return 0O

4. Initialise an N'Vector with the initial conditions.:
yy = ida.NVector ([0.7, 0.3, 0.0])

5. Initialise another N'Vector with the initial derivative conditions.:
yp = ida.NVector ([rl(yy)-r3(yy)-rd(yy), r2(yy)-rl(yy), 1l-yy[1l])

6. Create an IDA object.:
ida_mem = ida.IDACreate ()

7. Allocate integrator memory, set the initial value of the independent variable, and set tolerances. Absolute
tolerances may be an N'Vector of the same size as y in which case ida.IDA_SV should be used, or a scalar
value applying to all (1da.IDA_SS).:
abstol = ida.NVector([1l.0e-8, 1.0e-14, 1.0e-6])
reltol = ida.realtype(l.0e-4)
ida.IDAMalloc(ida_mem, £, 0.0, yy, yp, ida.IDA_SV, reltol, abstol)

8. Set any optional inputs using IDASet * ().

9. Choose a linear solver and set the problem size, i.e. number of variables. The available linear solvers are
IDADense, IDABand, IDASpgmr, IDASpbcg, and IDASpt fgmr.:
ida.IDADense (ida_mem, 3)

10. Set any optional linear solver inputs using ida.IDA<solver>Set *.

11. Optionally initialise root finding passing the IDA object, the number of roots to find, a vector of size equal to
the number of roots, and a pointer to any optional user data you want available in your root finding function.
The root finding function should populate a vector of root values, generally using implicit algebraic equations.
If any of those values are zero the integrator pauses, returning ida.IDA_ROOT_RETURN to indicate that at
least one root has been found.:
ida.IDARootInit (ida_mem, 2, rootfind, None)

12. Advance the solution in time, calling ida.IDASolve for each desired output time step. Each call to
ida.IDASolve specifies the desired time for the next stop (tout) and the current conditions (y). On re-
turn, y will contain the new conditions, and t will contain the time at which the integrator stopped. t, which
must be of type realtype and passed into ida.IDASolve by reference, can be different from tout if
roots are found, or errors encountered. The last parameter specifies how IDA should step. See the SUNDIALS
documentation for more details.:

t = ida.realtype (0)
tout = 0.4
while tout < 0.4%(10*x%x12):
flag = ida.IDASolve (ida_mem, tout, ctypes.byref(t), vy, yp, ida.IDA_NORMAL)
print (t, yy)
if flag == ida.IDA_ROOT_RETURN:
14 Contents

PySUNDIALS Documentation, Release 2.3.0-rc1

rootsfound = ida.IDAGetRootInfo (ida_mem, 2)
print rootsfound
elseif flag == ida.IDA_SUCCESS:
tout *= 10
else:
break

3.6 KINSOL

Programs using KINSOL will generally conform to a certain skeleton layout. The example used here serves to illus-
trate this skeleton layout, and is neither complete, nor representative of SUNDIALS/PySUNDIALS complete set of
capabilities. Please see the function reference or SUNDIALS documentation for more information.

1. Import the kinsol and ctypes modules.:

from pysundials import kinsol
import ctypes

2. Define your right-hand side function. This function must take exactly three parameters. The first
paramter will be an N'Vector containing the current values of the dependent variables. The second
parameter is an N'Vector whose elements must be filled with the new values of the dependent vari-
ables. The third parameter is a pointer to any arbitrary user data you may have specified, otherwise
None. This function essentially defines your ODE system and must do so using strictly linearly
independent equations. For example, a simple problem consisting of three variables and having the
following ODES:

evl = rl - r3 - r4
e v2 = r2 - rl
e v3 = rl - r2

(where r i is a function of the independent variable and the current values of the dependent variables)
would have the following RHS function, ignoring v3 beacuse it is linearly dependent with v2:

def f(u, fval, f_data):
fval[S2] = R2(u) — R1l(u)
fval[S1] = R1(u) - R3(u) - R4 (u)
return 0

3. Define any optional functions such as a Jacobian approximation, and/or error weight functions. See
function reference for details on parameters and returns.

4. Initialise an N'Vector with an initial guess.:
u = kinsol.NVector ([1.0, 0.7])
5. Initialise a template NVector of the same size as your dependent variable vector.:

template = kinsol.NVector ([0, 0])

6. Initialise a scaling vector or vectors as necessary. See function reference for kinsol .KINSol for
more details:

s = kinsol.NVector ([1, 11)

7. Create a KINSOL object.:

kin_mem = kinsol.KINCreate ()

8. Allocate solver memory, and set the RHS function and size of the system using the template vector.:

Contents 15

PySUNDIALS Documentation, Release 2.3.0-rc1

kinsol.KINMalloc (kin_mem, f, template)

9. Set any optional inputs using KINSet * ().

10. Choose a linear solver and set the problem size, i.e. number of variables. The available linear solvers
are KINDense, KINBand, KINSpgmr, KINSpbcg, and KINSpt fgmr.:

kinsol.KINDense (kin_mem, 2)

11. Set any optional linear solver inputs using kinsol.KIN<solver>Setx.

#. Solve the problem by calling kinsol.KINSol, passing the KINSOL memory object,
the vector with the initial guess, the globalisation strategy (one of kinsol.KIN_NONE or
kinsol.KIN_LINESEARCH), and two scaling vectors, u_scale and f_scale. In our case no scaling
is applied via the repeated use of the scaling vector s ([1,1]):

kinsol.KINSol (kin_mem, u, kinsol.KIN_LINESEARCH, s, s)

16

Contents

CHAPTER
FOUR

Indices and tables

e Index
e Module Index

 Search Page

17

	Introduction
	Installation
	Prerequisites
	From Source
	Binary Installation on Windows
	Configuration

	Using PySUNDIALS
	Importing PySUNDIALS modules
	NVectors
	CVODE
	CVODES
	IDA
	KINSOL

	Indices and tables

