
OpenSSH/Print version

Overview
The OpenSSH (http://www.openssh.org/) suite provides secure remote access and file transfer. Since its
initial release, it has grown to become the most widely used implementation of the SSH protocol. During the
first ten years of its existence, ssh has largely replaced older corresponding unencrypted tools and protocols.
The OpenSSH client is included by default in most operating system distributions, including OS X, Linux,
BSD and Solaris. Any day you use the Internet, you are using and relying on dozens if not hundreds of
machines operated and maintained using OpenSSH. A survey in 2008 showed that of the SSH servers found
running, just over 80% were OpenSSH. [1]

OpenSSH was first released towards the end of 1999. It is the latest step in a very long and useful history of
networked commuting, remote access and telecommuting.

History of OpenSSH

The first release of OpenSSH was in December 1999 as part of OpenBSD 2.6. The source code was
originally derived from a re-write of the last available open version, ssh 1.2.12 specifically, of SSH[2]. SSH
went on to become Tectia SSH.

Ongoing development of OpenSSH is done by the OpenBSD group. Core development occurs first on
OpenBSD, then portability teams bring the changes to other platforms. OpenSSH is an integral part of as
good as all server systems today and a good many network appliances such as routers, switches and
networked storage. The first steps were in many ways the biggest.

The Early Days of Remote Access

Some of the tools that inspired the need for SSH have been around since the beginning, too, or very near the
beginning of the Internet. Remote access has been a fundamental part of the concept since the idea stage
and the nature and capabilities of this access has evolved as the network has evolved in scale, scope and
usage. See the web version of the Levnez Unix Timeline[3] by Éric Lévénez for an overview of systems
development and the web version of Hobbes' Internet Timeline[4] by Robert H Zakon for an overview of the
development of the Internet.

1969

Telnet was one of the original ARPAnet application protocols, named in RFC 97. It was used to access
a host at a remote site locally. Telnet was described starting two years later in RFC 137, RFC 139,
RFC 318 and others, including the lost RFC 97. That is as good a turning point as any to delineate
Telnet.

1971

Thompson Shell, by Ken Thompson, was an improvement on the old text-based user interface, the
shell. This new one allowed redirects but was only a user interface and not for scripting.
In the same year FTP, the file transfer protocol, was described in RFC 114. A key goal was to promote
use of computers over the net by allowing users at any host on the network to use the file system of

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

1 sur 82 19/06/2016 16:33

any cooperating host.

1978

Bill Joy created BSD's C shell which is named for the C-like syntax it uses. It allows job control,
history substitution, and aliases, which features we find in today's interfaces.

In the same year, the Bourne Shell by Steve Bourne at Bell Labs [5] was created. It is the progenitor to
the default shells used in most distros today: ksh and bash.

1983

The remote file copy utility, rcp, appeared in 4.2 BSD. rcp copied files across the net to other hosts
using rsh, which also appeared staring 4.2 BSD, to perform its operations. Like telnet and ftp , all
passwords, user names and data are transmitted unencrypted in clear text. Both rsh and rcp were part
of the rlogin suite.

1991

PGP, written at MIT by Philip Zimmermann[6], charted new waters for encrypted electronic
communications with the goals of preserving civil liberties online, ensuring individual privacy, keeping
encryption legal in the USA, and protecting business communications. Like SSH it uses asymmetric
encryption with public / private key pairs.

1993

Kerberos V (RFC 1510) authentication service from MIT's project Athena [7] provides a means for
authentication over an open, unsecure network. Kerberos got its original start in 1988.

SSH - open then closed

1995

Tatu Ylönen at the Helsinki University of Technology developed the first SSH protocol and programs,

releasing them under an open license[8] as per the norm in computer science, software engineering and

advanced development. [9]

1995?

Björn Grönvall dug out the most recent open version of ssh, version 1.2.12[10] [11]. He and Holger
Trapp did the initial work to free the distribution, resulting in OSSH

1996

SSH2 protocol is defined

OpenSSH

1999

OpenSSH begins based on OSSH. Niels Provos, Theo de Raadt, Markus Friedl developed the
cryptographic components during the port to OpenBSD which became the OpenSSH we know today.
Dug Song, Aaron Campbell and many others provided various non-crypto contributions. openssl
library issues were sorted by Bob Beck. Damien Miller, Philip Hands, and others started porting

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

2 sur 82 19/06/2016 16:33

OpenSSH to Linux

2000

Markus Friedl added SSH 2 protocol support to OpenSSH version 2.0, which was released in June.[12]

OpenSSH 2.0 shipped with OpenBSD 2.7. Niels Provos and Theo de Raadt did most of the checking.
Bob Beck updated OpenSSL. Markus also added support for the SFTP protocol later that same year.
In September of 2000, the long wait in the USA was over for the patents on the RSA algorithms to
expire. In the European Union, the European Patent Convention of 1972, frees software, algorithms,
business methods or literature, unlike the unfortunate, anti-business situation in the USA. This
freedom in Europe hangs by a thread at the moment.
SSH Tectia changes licenses again.

2001

Damien Miller completed the SFTP client which was released in February.
SSH2 became the default protocol

2008

Built-in chroot support for sshd.

2010

As of OpenSSH 5.4, the legacy protocol SSH1 is finally disabled by default.

Note: OpenSSH can be used anywhere in the whole world because it uses only algorithms unencumbered by
software patents, business method patents, algorithm patents, and so on. These types of patents do not apply
in Europe, only physical inventions can be patented in Europe, but there are regions of the world where
these problems do occur. Small and medium businesses in Europe have been active in politics to keep the
advantage.

2014

As of OpenSSH 6.7, both the base and the portable versions of OpenSSH can build against LibreSSL
instead of OpenSSL for certain cryptographic functions.

Why Use OpenSSH?

A lot has changed since the commercialization of the Internet began in 1996. It was once a University and
Government research network and if you were on the net back then, odds were you were supposed to be
there. Though it was far from being utopia, any misbehavior could usually be quickly narrowed down to the
individuals involved and dealt with easily, usually with no more than a phone call or a few e-mails. Few, if
any, sessions back then were encrypted and both passwords and user names were passed in clear text.

By then, the WWW was more than a few years under way and undergoing explosive growth. The estimated
number of web servers online in 1996 grew from 100,000 at the beginning of the year to close to 650,000 by
the end of the same year[13]. When other types of servers are included in those figures, the estimated
year-end number is over 16,000,000 hosts, representing approximately 828,000 domains.[13]

Nowadays, hosts are subject to hostile scans from the moment they are connected to the network. Any and
all unencrypted traffic is scanned and parsed for user names, passwords and other sensitive information.
Currently, the biggest espionage threats come from private companies, but governments, individuals, and

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

3 sur 82 19/06/2016 16:33

organized crime are not without a presences.

Each connection goes through many networks and each packet may take the same or a different route there
and back again. Thirteen hops among three organizations in this example from a student computer to a
search engine:

% /usr/sbin/traceroute -n www.google.com
traceroute: Warning: www.google.com has multiple ad dresses; using 74.125.95.106
traceroute to www.l.google.com (74.125.95.106), 30 hops max, 40 byte packets
 1 xx.xx.xx.xx 0.419 ms 0.220 ms 0.213 ms University of Michigan
 2 xx.xx.xx.xx 0.446 ms 0.349 ms 0.315 ms Merit Network, Inc.
 3 xx.xx.xx.xx 0.572 ms 0.513 ms 0.525 ms University of Michigan
 4 xx.xx.xx.xx 0.472 ms 0.425 ms 0.402 ms University of Michigan
 5 xx.xx.xx.xx 0.647 ms 0.551 ms 0.561 ms University of Michigan
 6 xx.xx.xx.xx 0.945 ms 0.912 ms 0.865 ms University of Michigan
 7 xx.xx.xx.xx 6.478 ms 6.503 ms 6.489 ms Merit Network, Inc.
 8 xx.xx.xx.xx 6.597 ms 6.590 ms 6.604 ms Merit Network, Inc.
 9 216.239.48.154 64.935 ms 6.848 ms 6.793 ms Google, Inc.
10 72.14.232.141 17.606 ms 17.581 ms 17.680 ms Google, Inc.
11 209.85.241.27 17.736 ms 17.592 ms 17.519 ms Google, Inc.
12 72.14.239.193 17.767 ms 17.778 ms 17.930 ms Google, Inc.
13 74.125.95.106 17.903 ms 17.835 ms 17.867 ms Google, Inc.:

The net is big. It is not uncommon to find a trail of 15 to 20 hops between client and server nowadays. Any
machine on any of the subnets the packets travel over can eavesdrop with little difficulty if the packets are
not well encrypted.

What OpenSSH Does

The OpenSSH suite gives the following:

Encrypted remote access, including tunneling insecure protocols.
Encrypted file transfer
Run remote commands, programs or scripts and, as mentioned,
Replacement for rsh, rlogin , telnet and ftp

More concretely, that means that the following undesirable activities are prevented:

Eavesdropping of data transmitted over the network.
Manipulation of data at intermediate elements in the network (e.g. routers).
Address spoofing where an attack hosts pretends to be a trusted host by sending packets with the
source address of the trusted host.
IP source routing

As a free software project, OpenSSH provides:

Open Standards
Flexible License - freedom emphasized for developers
Strong Encryption using these ciphers:

AES

ChaCha20-Poly1305[14]

Strong Authentication
Public Key
Single Use Passwords
Kerberos
Dongles

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

4 sur 82 19/06/2016 16:33

Built-in SFTP
Data Compression
Port Forwarding

Encrypt legacy protocols
Encrypted X11 forwarding for X Window System

Key Agents
Single Sign-on using

Authentication Keys
Agent Forwarding
Ticket Passing
Kerberos
AFS

What OpenSSH Doesn't Do

OpenSSH is a very useful tool, but much of its effectiveness depends on correct use. It cannot protect from
any of the following situations.

Misconfiguration, misuse or abuse.
Compromised systems, particularly where the root account is compromised.
Insecure or inappropriate directory settings, particularly home directory settings.

OpenSSH must be properly configured and on a properly configured system in order to be of benefit.
Arranging both is not difficult, but since each system is unique, there is no one-size-fits-all solution. The
right configuration is dependent on the uses the system and OpenSSH are put to.

If you login from a host to a server and an attacker has control of root on either side, he can listen to your
session by reading from the pseudo-terminal device, even though SSH is encrypted on the network SSH must
communicate in clear text with the terminal device.

If an attacker can change files in your home directory, for example via a networked file system, he may be
able to fool SSH.

Last but not least, if OpenSSH is set to allow everyone in, whether on purpose or by accident, it will.

References

"Statistics from the current scan results". OpenSSH.org. 2008. http://www.openssh.com/usage
/ssh-stats.html.

1.

"OpenSSH History". OpenSSH. http://openssh.org/history.html. Retrieved 2012-11-17.2.
"UNIX History Timeline". Éric Lévénez. http://www.levenez.com/unix/. Retrieved 2011-02-17.3.
"Hobbes' Internet Timeline". Robert H'obbes' Zakon. http://www.zakon.org/robert/internet/timeline/.
Retrieved 2011-02-17.

4.

Howard Dahdah (2009). "The A-Z of Programming Languages: Bourne shell, or sh". Computerworld.
http://www.computerworld.com.au/article/279011/a-z_programming_languages_bourne_shell_sh/.
Retrieved 2011-02-18.

5.

Phil Zimmermann (1991). "Why I Wrote PGP". Massachusetts Institute of Technology.
http://www.mit.edu/~prz/EN/essays/WhyIWrotePGP.html. Retrieved 2011-02-18.

6.

"Designing an Authentication System: a Dialogue in Four Scenes.". 1988. http://web.mit.edu/Kerberos
/dialogue.html. Retrieved 2011-02-17.

7.

"Help:SSH 1.0.0 license". FUNET. ftp://ftp.funet.fi/pub/mirrors/ftp.cs.hut.fi/pub/ssh/old/ssh-8.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

5 sur 82 19/06/2016 16:33

1.0.0.tar.gz. Retrieved 2013-04-13.
Tatu Ylönen (1995-07-12). "ANNOUNCEMENT: Ssh (Secure Shell) Remote Login Program".
news://comp.security.unix. https://groups.google.com/group/comp.security.unix
/msg/67079d812a19f499?dmode=source&hl=en&pli=1. Retrieved 2011-11-26.

9.

"Help:SSH 1.2.12 license". friedl. http://wwwcip.informatik.uni-erlangen.de/~msfriedl/LIC/ssh-1.2.12
/COPYING. Retrieved 2011-02-17.

10.

"Help:SSH 1.2.12.92 license". friedl. http://wwwcip.informatik.uni-erlangen.de/~msfriedl/LIC/ssh-
1.2.12.92/COPYING. Retrieved 2011-02-17.

11.

"OpenSSH Project History and Credits". OpenSSH. http://www.openssh.com/history.html. Retrieved
2011-03-10.

12.

Robert H'obbes' Zakon. "Hobbes' Internet Timeline". Zakon Group LLC. http://www.zakon.org/robert
/internet/timeline/. Retrieved 2011-02-17.

13.

Damien Miller (2013-11-29). "ChaCha20 and Poly1305 in OpenSSH". http://blog.djm.net.au/2013/11
/chacha20-and-poly1305-in-openssh.html. Retrieved 2014-04-26.

14.

Why Use Encryption
Encryption has been a hot topic in computing for a long time. It became a high priority item in national and
international politics in 1991 when Dr. Phil Zimmermann at MIT first published Pretty Good Privacy (PGP).
Encryption went from a specialty to a requirement with the arrival the first web shops and increasing
volumes of money changed hands online. By 1996 encryption became essential for e-business. By 2000 it
became recognized as a general, essential prerequisite in electronic communication. Currently, 2010, there is
almost no chance of maintaining control over or integrity of any networked machine for more than a few
minutes without the help of encryption.

Currently much communication over computer networks is still done without encryption. That would be
most communication, if inadequate encryption is also taken into account. This is despite years of warnings,
government recommendations, best practice guidelines and incidents. As a result, any machine connected to
the network can intercept communication that passes over that network. The eavesdroppers are many and
varied. They include administrators, staff, employers, criminals, corporate spies, and even governments.
Corporate espionage alone has become an enormous burden and barrier.

Businesses are well aware of dumpster diving and take precautions to shred all paper documents. But what
about electronic information? Contracts and negotiations, trade secrets, patent applications, decisions and
minutes, customer data and invoicing, personnel data, financial and tax records, calendars and schedules,
product designs and production notes, training materials, and even regular correspondence go over the net
daily. Archived materials, even if they are not accessed directly, are usually on machines that are available
and accessed for other reasons.

Many company managers and executives are still unaware that their communications and documents are so
easily intercepted, in spite of apparent and expensive access restrictions. In many cases these can be show to
be ineffectual and at best purely cosmetic. Security Theater is one aspect and in the field of security it is
more common to find snake oil than authentic solutions. Still, there is little public demonstration of
awareness of the magnitude of corporate espionage nowadays or the cost of failure. Even failure to act has
its costs. Not only is sensitive data available if left unencrypted, but also trends in less sensitive data can be
spotted with a large enough sampling. A very large amount of information can be inferred even from lesser
communications. Data mining is now a well-known concept as is the so-called wireless wiretap. With the
increase in online material and activity, encryption is more relevant than ever even if many years have

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

6 sur 82 19/06/2016 16:33

passed since the issues were first brought into the limelight.

Excerpt of ssh-1.0.0 README from July 12, 1995

Tatu Ylönen, then at the Helsinki University of Technology, wrote the README[1] accompanying the early
versions of his Open Source software, SSH. The following is an excerpt about why encryption is important.

ssh-1.0.0 README 1995-07-12

...

WHY TO USE SECURE SHELL

Currently, almost all communications in computer networks are done without encryption. As a
consequence, anyone who has access to any machine connected to the network can listen in on
any communication. This is being done by hackers, curious administrators, employers, criminals,
industrial spies, and governments. Some networks leak off enough electromagnetic radiation
that data may be captured even from a distance.

When you log in, your password goes in the network in plain text. Thus, any listener can then
use your account to do any evil he likes. Many incidents have been encountered worldwide
where crackers have started programs on workstations without the owners knowledge just to
listen to the network and collect passwords. Programs for doing this are available on the
Internet, or can be built by a competent programmer in a few days.

Any information that you type or is printed on your screen can be monitored, recorded, and
analyzed. For example, an intruder who has penetrated a host connected to a major network can
start a program that listens to all data flowing in the network, and whenever it encounters a
16-digit string, it checks if it is a valid credit card number (using the check digit), and saves the
number plus any surrounding text (to catch expiration date and holder) in a file. When the
intruder has collected a few thousand credit card numbers, he makes smallish mail-order
purchases from a few thousand stores around the world, and disappears when the goods arrive
but before anyone suspects anything.

Businesses have trade secrets, patent applications in preparation, pricing information,
subcontractor information, client data, personnel data, financial information, etc. Currently,
anyone with access to the network (any machine on the network) can listen to anything that
goes in the network, without any regard to normal access restrictions.

Many companies are not aware that information can so easily be recovered from the network.
They trust that their data is safe since nobody is supposed to know that there is sensitive
information in the network, or because so much other data is transferred in the network. This is
not a safe policy.

Individual persons also have confidential information, such as diaries, love letters, health care
documents, information about their personal interests and habits, professional data, job
applications, tax reports, political documents, unpublished manuscripts, etc.

There is also another frightening aspect about the poor security of communications. Computer
storage and analysis capability has increased so much that it is feasible for governments, major
companies, and criminal organizations to automatically analyze, identify, classify, and file
information about millions of people over the years. Because most of the work can be
automated, the cost of collecting this information is getting very low.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

7 sur 82 19/06/2016 16:33

Government agencies may be able to monitor major communication systems, telephones, fax,
computer networks, etc., and passively collect huge amounts of information about all people
with any significant position in the society. Most of this information is not sensitive, and many
people would say there is no harm in someone getting that information. However, the
information starts to get sensitive when someone has enough of it. You may not mind someone
knowing what you bought from the shop one random day, but you might not like someone
knowing every small thing you have bought in the last ten years.

If the government some day starts to move into a more totalitarian direction, there is
considerable danger of an ultimate totalitarian state. With enough information (the
automatically collected records of an individual can be manually analyzed when the person
becomes interesting), one can form a very detailed picture of the individual's interests, opinions,
beliefs, habits, friends, lovers, weaknesses, etc. This information can be used to 1) locate any
persons who might oppose the new system 2) use deception to disturb any organizations which
might rise against the government 3) eliminate difficult individuals without anyone
understanding what happened. Additionally, if the government can monitor communications too
effectively, it becomes too easy to locate and eliminate any persons distributing information
contrary to the official truth.

Fighting crime and terrorism are often used as grounds for domestic surveillance and restricting
encryption. These are good goals, but there is considerable danger that the surveillance data
starts to get used for questionable purposes. I find that it is better to tolerate a small amount of
crime in the society than to let the society become fully controlled. I am in favor of a fairly
strong state, but the state must never get so strong that people become unable to spread contra-
offical information and unable to overturn the government if it is bad. The danger is that when
you notice that the government is too powerful, it is too late. Also, the real power may not be
where the official government is.

For these reasons (privacy, protecting trade secrets, and making it more difficult to create a
totalitarian state), I think that strong cryptography should be integrated to the tools we use
every day. Using it causes no harm (except for those who wish to monitor everything), but not
using it can cause huge problems. If the society changes in undesirable ways, then it will be to
late to start encrypting.

Encryption has had a "military" or "classified" flavor to it. There are no longer any grounds for
this. The military can and will use its own encryption; that is no excuse to prevent the civilians
from protecting their privacy and secrets. Information on strong encryption is available in every
major bookstore, scientific library, and patent office around the world, and strong encryption
software is available in every country on the Internet.

Some people would like to make it illegal to use encryption, or to force people to use encryption
that governments can break. This approach offers no protection if the government turns bad.
Also, the "bad guys" will be using true strong encryption anyway. Thus, any "key escrow
encryption" or whatever it might be called only serves to help monitor the ordinary people and
petty criminals; it does not help against powerful criminals, terrorists, or espionage, because
they will know how to use strong encryption anyway.

...

Thanks also go to Philip Zimmermann, whose PGP software and the associated legal battle
provided inspiration, motivation, and many useful techniques, and to Bruce Schneier whose
book Applied Cryptography has done a great service in widely distributing knowledge about
cryptographic methods.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

8 sur 82 19/06/2016 16:33

...

ssh-1.0.0 README 1995-07-12

Phil Zimmermann on encryption and privacy, from 1991, updated
1999

Phil Zimmermann wrote the encryption tool Pretty Good Privacy (PGP) in 1991 to promote privacy and to
help keep encryption, and thus privacy, legal around the world. Considerable difficulty occurred in the
United States until PGP was published outside and re-imported in a very visible, public manner.

Why I Wrote PGP
Part of the Original 1991 PGP User's Guide (updated in 1999)

"Whatever you do will be insignificant, but it is very important that you do it."

–Mahatma Gandhi.

It's personal. It's private. And it's no one's business but yours. You may be planning a political
campaign, discussing your taxes, or having a secret romance. Or you may be communicating
with a political dissident in a repressive country. Whatever it is, you don't want your private
electronic mail (email) or confidential documents read by anyone else. There's nothing wrong
with asserting your privacy. Privacy is as apple-pie as the Constitution.

The right to privacy is spread implicitly throughout the Bill of Rights. But when the United
States Constitution was framed, the Founding Fathers saw no need to explicitly spell out the
right to a private conversation. That would have been silly. Two hundred years ago, all
conversations were private. If someone else was within earshot, you could just go out behind
the barn and have your conversation there. No one could listen in without your knowledge. The
right to a private conversation was a natural right, not just in a philosophical sense, but in a
law-of-physics sense, given the technology of the time.

But with the coming of the information age, starting with the invention of the telephone, all that
has changed. Now most of our conversations are conducted electronically. This allows our most
intimate conversations to be exposed without our knowledge. Cellular phone calls may be
monitored by anyone with a radio. Electronic mail, sent across the Internet, is no more secure
than cellular phone calls. Email is rapidly replacing postal mail, becoming the norm for
everyone, not the novelty it was in the past.

Until recently, if the government wanted to violate the privacy of ordinary citizens, they had to
expend a certain amount of expense and labor to intercept and steam open and read paper mail.
Or they had to listen to and possibly transcribe spoken telephone conversation, at least before
automatic voice recognition technology became available. This kind of labor-intensive
monitoring was not practical on a large scale. It was only done in important cases when it
seemed worthwhile. This is like catching one fish at a time, with a hook and line. Today, email
can be routinely and automatically scanned for interesting keywords, on a vast scale, without
detection. This is like driftnet fishing. And exponential growth in computer power is making the
same thing possible with voice traffic.

Perhaps you think your email is legitimate enough that encryption is unwarranted. If you really
are a law-abiding citizen with nothing to hide, then why don't you always send your paper mail
on postcards? Why not submit to drug testing on demand? Why require a warrant for police
searches of your house? Are you trying to hide something? If you hide your mail inside

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

9 sur 82 19/06/2016 16:33

envelopes, does that mean you must be a subversive or a drug dealer, or maybe a paranoid nut?
Do law-abiding citizens have any need to encrypt their email?

What if everyone believed that law-abiding citizens should use postcards for their mail? If a
nonconformist tried to assert his privacy by using an envelope for his mail, it would draw
suspicion. Perhaps the authorities would open his mail to see what he's hiding. Fortunately, we
don't live in that kind of world, because everyone protects most of their mail with envelopes. So
no one draws suspicion by asserting their privacy with an envelope. There's safety in numbers.
Analogously, it would be nice if everyone routinely used encryption for all their email, innocent
or not, so that no one drew suspicion by asserting their email privacy with encryption. Think of
it as a form of solidarity.

Senate Bill 266, a 1991 omnibus anticrime bill, had an unsettling measure buried in it. If this
non-binding resolution had become real law, it would have forced manufacturers of secure
communications equipment to insert special "trap doors" in their products, so that the
government could read anyone's encrypted messages. It reads, "It is the sense of Congress that
providers of electronic communications services and manufacturers of electronic
communications service equipment shall ensure that communications systems permit the
government to obtain the plain text contents of voice, data, and other communications when
appropriately authorized by law." It was this bill that led me to publish PGP electronically for
free that year, shortly before the measure was defeated after vigorous protest by civil
libertarians and industry groups.

The 1994 Communications Assistance for Law Enforcement Act (CALEA) mandated that
phone companies install remote wiretapping ports into their central office digital switches,
creating a new technology infrastructure for "point-and-click" wiretapping, so that federal
agents no longer have to go out and attach alligator clips to phone lines. Now they will be able
to sit in their headquarters in Washington and listen in on your phone calls. Of course, the law
still requires a court order for a wiretap. But while technology infrastructures can persist for
generations, laws and policies can change overnight. Once a communications infrastructure
optimized for surveillance becomes entrenched, a shift in political conditions may lead to abuse
of this new-found power. Political conditions may shift with the election of a new government,
or perhaps more abruptly from the bombing of a federal building.

A year after the CALEA passed, the FBI disclosed plans to require the phone companies to
build into their infrastructure the capacity to simultaneously wiretap 1 percent of all phone calls
in all major U.S. cities. This would represent more than a thousandfold increase over previous
levels in the number of phones that could be wiretapped. In previous years, there were only
about a thousand court-ordered wiretaps in the United States per year, at the federal, state, and
local levels combined. It's hard to see how the government could even employ enough judges to
sign enough wiretap orders to wiretap 1 percent of all our phone calls, much less hire enough
federal agents to sit and listen to all that traffic in real time. The only plausible way of
processing that amount of traffic is a massive Orwellian application of automated voice
recognition technology to sift through it all, searching for interesting keywords or searching for
a particular speaker's voice. If the government doesn't find the target in the first 1 percent
sample, the wiretaps can be shifted over to a different 1 percent until the target is found, or until
everyone's phone line has been checked for subversive traffic. The FBI said they need this
capacity to plan for the future. This plan sparked such outrage that it was defeated in Congress.
But the mere fact that the FBI even asked for these broad powers is revealing of their agenda.

Advances in technology will not permit the maintenance of the status quo, as far as privacy is
concerned. The status quo is unstable. If we do nothing, new technologies will give the
government new automatic surveillance capabilities that Stalin could never have dreamed of.
The only way to hold the line on privacy in the information age is strong cryptography.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

10 sur 82 19/06/2016 16:33

You don't have to distrust the government to want to use cryptography. Your business can be
wiretapped by business rivals, organized crime, or foreign governments. Several foreign
governments, for example, admit to using their signals intelligence against companies from other
countries to give their own corporations a competitive edge. Ironically, the United States
government's restrictions on cryptography in the 1990's have weakened U.S. corporate defenses
against foreign intelligence and organized crime.

The government knows what a pivotal role cryptography is destined to play in the power
relationship with its people. In April 1993, the Clinton administration unveiled a bold new
encryption policy initiative, which had been under development at the National Security
Agency (NSA) since the start of the Bush administration. The centerpiece of this initiative was a
government-built encryption device, called the Clipper chip, containing a new classified NSA
encryption algorithm. The government tried to encourage private industry to design it into all
their secure communication products, such as secure phones, secure faxes, and so on. AT&T
put Clipper into its secure voice products. The catch: At the time of manufacture, each Clipper
chip is loaded with its own unique key, and the government gets to keep a copy, placed in
escrow. Not to worry, though–the government promises that they will use these keys to read
your traffic only "when duly authorized by law." Of course, to make Clipper completely
effective, the next logical step would be to outlaw other forms of cryptography.

The government initially claimed that using Clipper would be voluntary, that no one would be
forced to use it instead of other types of cryptography. But the public reaction against the
Clipper chip was strong, stronger than the government anticipated. The computer industry
monolithically proclaimed its opposition to using Clipper. FBI director Louis Freeh responded to
a question in a press conference in 1994 by saying that if Clipper failed to gain public support,
and FBI wiretaps were shut out by non-government-controlled cryptography, his office would
have no choice but to seek legislative relief. Later, in the aftermath of the Oklahoma City
tragedy, Mr. Freeh testified before the Senate Judiciary Committee that public availability of
strong cryptography must be curtailed by the government (although no one had suggested that
cryptography was used by the bombers).

The government has a track record that does not inspire confidence that they will never abuse
our civil liberties. The FBI's COINTELPRO program targeted groups that opposed government
policies. They spied on the antiwar movement and the civil rights movement. They wiretapped
the phone of Martin Luther King. Nixon had his enemies list. Then there was the Watergate
mess. More recently, Congress has either attempted to or succeeded in passing laws curtailing
our civil liberties on the Internet. Some elements of the Clinton White House collected
confidential FBI files on Republican civil servants, conceivably for political exploitation. And
some overzealous prosecutors have shown a willingness to go to the ends of the Earth in pursuit
of exposing sexual indiscretions of political enemies. At no time in the past century has public
distrust of the government been so broadly distributed across the political spectrum, as it is
today.

Throughout the 1990s, I figured that if we want to resist this unsettling trend in the government
to outlaw cryptography, one measure we can apply is to use cryptography as much as we can
now while it's still legal. When use of strong cryptography becomes popular, it's harder for the
government to criminalize it. Therefore, using PGP is good for preserving democracy. If privacy
is outlawed, only outlaws will have privacy.

It appears that the deployment of PGP must have worked, along with years of steady public
outcry and industry pressure to relax the export controls. In the closing months of 1999, the
Clinton administration announced a radical shift in export policy for crypto technology. They
essentially threw out the whole export control regime. Now, we are finally able to export strong
cryptography, with no upper limits on strength. It has been a long struggle, but we have finally

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

11 sur 82 19/06/2016 16:33

won, at least on the export control front in the US. Now we must continue our efforts to deploy
strong crypto, to blunt the effects increasing surveillance efforts on the Internet by various
governments. And we still need to entrench our right to use it domestically over the objections
of the FBI.

PGP empowers people to take their privacy into their own hands. There has been a growing
social need for it. That's why I wrote it.

Philip R. Zimmermann
Boulder, Colorado
June 1991 (updated 1999)[2]

Original Press Release for OpenSSH

Below is the original press release for OpenSSH sent back in 1999.[3]

Date: Mon, 25 Oct 1999 00:04:29 -0600 (MDT)
From: Louis Bertrand <louis cvs.openbsd.org>
To: Liz Coolbaugh <lwn lwn.net>
Subject: OpenBSD Press Release: OpenSSH integrated into operating system

PRESS RELEASE

OpenSSH: Secure Shell integrated into OpenBSD operating system

Source: OpenBSD
Contacts:

Louis Bertrand, OpenBSD media relations
Bertrand Technical Services
Tel: (905) 623-8925 Fax: (905) 623-3852
louis openbsd.org

Theo de Raadt, OpenBSD lead developer
deraadt openbsd.org

Project Web site: http://www.openbsd.org/

OpenSSH: Secure Shell integrated into OpenBSD Secure communications package no longer
third-party add-on

[October 25, 1999: Calgary, Canada] -- The OpenBSD developers are pleased to announce the
release of OpenSSH, a free implementation of the popular Secure Shell encrypted
communications package. OpenSSH, to be released with OpenBSD 2.6, is compatible with both
SSH 1.3 and 1.5 protocols and dodges most restrictions on the free distribution of strong
cryptography.

OpenSSH is based on a free release of SSH by Tatu Ylonen, with major changes to remove
proprietary code and bring it up to current security and functionality standards. Secure Shell
operates like the popular TELNET remote terminal package but with an encrypted link between
the user and the remote server. SSH also allows "tunnelling" of network services through the
scrambled connection for added privacy. OpenSSH has been tested to interoperate with
ssh-1.2.27 from SSH Communications, and the TTSSH and SecureCRT Windows clients.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

12 sur 82 19/06/2016 16:33

"Network sessions involving strong cryptographic security are a requirement in the modern
world," says lead developer Theo de Raadt. "Everyone needs this. People using the telnet or
rlogin protocols are not aware of the extreme danger posed by password sniffing and session
hijacking."

In previous releases of OpenBSD, users were urged to download SSH as soon as possible after
installing the OS. Without SSH, terminal sessions transmitted in clear text allow eavesdroppers
on the Internet to capture user names and password combinations and thus bypass the security
measures in the operating system.

"I asked everyone `what is the first thing you do after installing OpenBSD?' Everyone gave me
the same answer: they installed ssh," says de Raadt. "That's a pain, so we've made it much
easier."

All proprietary code in the original distribution was replaced, along with some libraries
burdened with the restrictive GNU Public License (GPL). Much of of the actual cryptographic
code was replaced by calls to the crypto libraries built into OpenBSD. The source code is now
completely freely re-useable, and vendors are encouraged to re-use it if they need ssh
functionality.

OpenSSH relies on the Secure Sockets Layer library (libssl) which incorporates the RSA
public-key cryptography system. RSA is patented in the US and OpenBSD developers must
work around the patent restrictions. Users outside the US may download a libssl file based on
the patent-free OpenSSL implementation. For US non-commercial users, OpenBSD is preparing
a libssl based on the patented RSAREF code. Unfortunately, the US legal framework effectively
bans US commercial users from using OpenSSH, and curtails freedom of choice in that market.

OpenSSH was developed and integrated into OpenBSD by Niels Provos, Theo de Raadt,
Markus Friedl for cryptographic work; Dug Song, Aaron Campbell, and others for various
non-crypto contributions; and Bob Beck for helping with the openssl library issues. The original
SSH was written by Tatu Ylonen. Bjoern Groenvall and Holger Trapp did the initial work to free
the distribution.

OpenBSD is an Internet-based volunteer effort to produce a secure multi-platform operating
system with built-in support for cryptography. It has been described in the press as the world's
most secure operating system. For more information about OpenSSH and OpenBSD, see the
project Web pages at http://www.OpenBSD.org/.

Source: OpenBSD
http://lwn.net/1999/1028/a/openssh.html

The European Union (EU) on Encryption

During 2000, the European Commission investigated the state of international and industrial electronic
espionage. Counter-measures and solutions were investigated as well as the risks. The result was a resolution
containing a summary of the findings and a series of recommended actions for Member States to carry out
and goals to meet. Recommendations to EU Member States from the European Parliament resolution
ECHELON, A5-0264/2001 (emphasis added):

"29. Urges the Commission and Member States to devise appropriate measures to promote, develop
and manufacture European encryption technology and software and above all to support projects at
developing user-friendly open-source encryption software;"
. . .

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

13 sur 82 19/06/2016 16:33

"33. Calls on the Community institutions and the public administrations of the Member States to
provide training for their staff and make their staff familiar with new encryption technologies and
techniques by means of the necessary practical training and courses;"[4]

It was found during the investigation that businesses were the most at risk and the most vulnerable and that
widespread use of open source encryption technology is to be encouraged. The same can be said even today.

References

"SSH 1.0.0 README". FUNET. 1995. ftp://ftp.funet.fi/pub/mirrors/ftp.cs.hut.fi/pub/ssh/old/.1.
Phil Zimmermann (1991). "Why I Wrote PGP". Massachusetts Institute of Technology.
http://www.mit.edu/~prz/EN/essays/WhyIWrotePGP.html. Retrieved 2011-02-18.

2.

"OpenSSH: Secure Shell integrated into OpenBSD operating system". LWN. 1999. http://lwn.net
/1999/1028/a/openssh.html. Retrieved 2011-02-18.

3.

"European Parliament resolution on the existence of a global system for the interception of private
and commercial communications (ECHELON interception system) (2001/2098(INI))". European
Parliament. 2001. http://www.europarl.europa.eu/sides/getDoc.do?type=TA&reference=P5-
TA-2001-0441&format=XML&language=EN. Retrieved 2011-02-18.

4.

SSH Protocols
The current set of Secure Shell protocols is SSH2. It is a rewrite of the old, deprecated SSH1 protocol. It
contains significant improvements in security, performance, and portability. The default is now SSH2.
OpenSSH uses the SSH protocol, connecting over TCP. Normally, one SSH session per TCP connection is
made, but multiple sessions can be multiplexed over a single TCP connection if planned that way.

The Secure Shell protocol is an open standard. As such, it is vendor-neutral and maintained by the Internet
Engineering Task Force (IETF). The current protocol is described in RFC 4250 through RFC 4256 and
standardized by the IETF secsh working group. The overall structure of SSH2 is described in RFC 4251, The
Secure Shell (SSH) Protocol Architecture.

The SSH protocol is composed of three layers: the transport layer, the authentication layer, and the
connection layer.

SSH-CONNECT – The connection layer runs over the user authentication protocol. It multiplexes
many different concurrent encrypted channels into logical channels over the authenticated
connection. It allows for tunneling of login sessions and TCP-forwarding. It provides a flow control
service for these channels. Additionally, various channel-specific options can be negotiated. This layer
manages the SSH session, session multiplexing, X11 forwarding, TCP forwarding, shell, remote
program execution, invoking SFTP subsystem.

SSH-USERAUTH – The user authentication layer authenticates the client-side to the server. It uses
the established connection and runs on top of the transport layer. It provides several mechanisms for
user authentication. These include password authentication, public-key or host-based authentication
mechanisms, challenge-response, pluggable authentication modules (PAM), Generic Security Services
API (GSSAPI) and even dongles.

SSH-TRANS – The transport layer provides server authentication, confidentiality and data integrity

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

14 sur 82 19/06/2016 16:33

Sequence Diagram for SSH Password Authentication

over TCP. It does this through algorithm negotiation and a key exchange. The key exchange includes
server authentication and results in a cryptographically secured connection: it provides integrity,

confidentiality and optional compression. [1]

Among the differences between the current protocol, SSH2, and the deprecated protocol, SSH1, are that
SSH2 uses host keys for authentication. Whereas SSH1 used both server and host keys to authenticate.
There's not much which can be added about the protocols which is not already covered with more detail and
authority in RFC 4251 [2].

SSH File Transfer Protocol (SFTP)

The SSH File Transfer Protocol (SFTP) is a binary protocol to provide secure file transfer, access and
management.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

15 sur 82 19/06/2016 16:33

SFTP on the server side was added by Markus Friedl in time for the 2.3.0 release of OpenSSH in November
2000. Damien Miller added support for SFTP to the client side in time for 2.5.0. Since then, many have
added to both the client and the server.

SFTP is not FTPS

For basic file transfer, nothing more is needed than an account on the machine with the OpenSSH server.
SFTP support is built into the OpenSSH server package. The SFTP protocol, in contrast to old FTP, has been
designed from the ground up to be as secure as possible for both login and data transfer.

Unless the use-case calls for publicly available, read-only, downloads, don't worry about trying to fiddle with
FTP. It is the protocol FTP itself that is inherently insecure. It's great for read-only, public data transfer. The
programs vsftpd and proftpd, for example, are secure insofar as the server software itself goes, although the
protocol is insecure. In other words the program itself is more or less fine and if you need to provide
read-only, publicly available downloads then FTP maybe the right tool. Otherwise forget about FTP. Nearly
always when users ask for "FTP" they don't mean specifically the old file transfer protocol from 1971 as
described in RFC 114, but a generic means of file transfer and there are many ways to solve that problem.
This is especially true since the next part of their request is usually how to make it secure. The name "FTP"
is frequently mis-used generically to mean any file transfer utility, much the same way as the term "Coke" is
used in some of the Southern States to mean any carbonated soft drink, not just Coca-Cola. Consider SFTP
or, for larger groups, even SSHFS, Samba or AFS. While old FTP succeeded very well in achieving its main
goal to promote use of networked computers by allowing users at any host on the network to use the file
system of any cooperating host, it cannot be made secure. There's nothing to be done about that, so it is time
to get over it.

Again, it is the protocol itself, FTP, which is the problem.[3] With FTP, the data, passwords and user name
are all sent back and forth unencrypted.[4] Anyone on the client's subnet, the server's subnet or any subnet in
between can 'sniff' the passwords and data when FTP is used. With extra effort it is possible to wrap FTP
inside SSL or TLS, thus creating FTPS. However, tunneling FTP over SSL/TLS is complex to do and far
from an optimum solution.

Unfortunately name confusion combined with the large number of posts and discussions created by complex,
nit-picky tasks like wrapping FTP in SSL to provide FTPS, the wrong way still turns up commonly in web
searches regarding file transfer. In contrast, easy, relatively painless solutions vanish because it is rarely
necessary to post how to do those. Also, an easy solution can be summed up in very few lines and maybe a
single answer. Thus, there is still a lot of talk online about 'securing' FTP and very little mention of using
SFTP. It's a vicious cycle that this book hopes to help break: Difficult task means lots of discussion and
noise, lots of discussion and noise means strong web presence, strong web presence means high Google
ranking.

SFTP tools are very common, but might be taken for granted and thus overlooked. SFTP tools are just as
easy to use and more functional than old FTP clients. In fact a lot of improvements have been made in
usability. There is no shortage of common, GUI-based SFTP clients to transfer files: Filezilla, Konqueror,
Dolphin, Nautilus, Cyberduck, Fugu, and Fetch top the list but there are many more. Most are Free
Software. These SFTP clients are very easy to use. For example, in Konqueror, just type in the URL to the
sftp server, where the server name or address is xx.yy.zz.aa.

sftp://xx.yy.zz.aa

If it is desirable to start with a specific directory, then that too can be specified.

sftp://xx.yy.zz.aa/var/www/pictures/

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

16 sur 82 19/06/2016 16:33

One special client worth knowing about is sshfs. With sshfs as an SFTP client the other machine is accessible
as an open folder on your machine's local file system. In that way any program you normally have to work
with files, such as LibreOffice, Inkscape or Gimp can access the remote machine via that folder.

Background of FTP

FTP is from the 1970s. It's a well proven workhorse, but from an era when if you were on the net you were
supposed to be there and if there was trouble it could usually be cleared up with a short phone call or an
e-mail or two. It sends the login name, password and all of the data unencrypted for anyone to intercept.
FTP clients can connect to the FTP server in either passive or active modes. Both active and passive modes
for FTP use two ports, one for control and one for data. In FTP Active mode, after the client makes a
connection to the FTP server it then allows an incoming connection to be initiated from the server to for
data transfer. In FTP Passive mode, after the client makes a connection to the FTP server, the server then
responds with information about a second port for data transfer and the client initiates the second
connection. Thus FTP is most relevant now as Anonymous FTP, which is still excellent for read-only
downloads without login. To transfer read-only data, FTP is still one way to go, as would be using the web
(HTTP or HTTPS) or a P2P protocol like bittorrent are other options for offering read-only downloads.
Using tcpdump to show FTP activity

An illustration of how the old protocol, FTP, is insecure can be had from the utility tcpdump. It can show
what is going over the network during an Anonymous FTP session, or for that matter any FTP session. Look
at the manual page for tcpdump for an explanation of the individual arguments, but the overall result of the
usage below is that it displays the first FTP or FTP-Data packets going from the client to the server and vice
versa.

The output below hows an excerpt from the output of tcpdump which captured packets between an FTP
client and the FTP server, one line per packet.

$ sudo tcpdump -q -s 0 -c 10 -A -i eth0 \
"tcp and (port ftp or port ftp-data) "
tcpdump: verbose output suppressed, use -v or -vv f or full protocol decode
listening on eth0, link-type EN10MB (Ethernet), cap ture size 65535 bytes
…
:18:36.010820 IP desk.55227 > server.ftp: tcp 16 E. .D..@.@.....1.[.X.....G.r.l..... ."......U SER anonymous
:18:36.073192 IP server.ftp > desk.55227: tcp 0 E.. 4jX@.7.3.[.X...1..... ...G.r#..........."..
:18:36.074019 IP server.ftp > desk.55227: tcp 34 E. .VjY@.7.3.[.X...1..... ...G.r#....Y......"..3 31 Please specify t
:18:36.074042 IP desk.55227 > server.ftp: tcp 0 E.. 4..@.@..+..1.[.X.....G.r# ..)........... ."......
:18:42.098941 IP desk.55227 > server.ftp: tcp 23 E. .K..@.@.....1.[.X.....G.r# ..)....gv..... .".w....P ASS user@example.ne
:18:42.162692 IP server.ftp > desk.55227: tcp 23 E. .KjZ@.7.3.[.X...1..... ..)G.r:...........".w2 30 Login successful
…
:18:43.431827 IP server.ftp > desk.55227: tcp 14 E. .Bj\@.7.3.[.X...1..... ..SG.rF.....j....."..2 21 Goodbye.
…

As can be seen in lines 3 and 7, data, such as text, from the server is visible. In lines 1 and 5, text entered by
the user is visible, in this case including the user name and password used to log in. Fortunately the session is
Anonymous FTP, which is read-only and used for downloading. Anonymous FTP is a rather efficient way to
publish material for download. For Anonymous FTP, the user name is always "anonymous" and the
password the user’s e-mail address and the server's data always read-only.

If you have the package openssh-server already installed, no further configuration of the server is needed to
start using SFTP for file transfers. Though comparatively speaking, FTPS is significantly more secure than
FTP. If you want remote remote login access, then both FTP and FTPS should be avoided. A very large
reason to avoid both is to save work.

On FTPS

FTPS is FTP tunneled over SSL or TLS. A goal of FTP was to encourage the use of remote computers. It,

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

17 sur 82 19/06/2016 16:33

Sequence Diagram for OpenSSH Privilege Separation

along with the web, has succeeded. A goal of FTPS was to secure logins and transfers, and was a necessary
step in securing file transfers with the legacy protocol.

Since SFTP is so much easier to deploy and most systems now include both graphical and text-based SFTP
clients, FTPS can really be considered deprecated for most occasions. Some good background material can
be found in the Request for Comments (RFCs) for FTP and FTPS. There, SFTP and even HTTPS are better
matches and largely supercede FTPS. See the section on Client Applications for an idea of the SFTP clients
available.

Privilege Separation

Privilege separation is when a process is divided into sub-processes, each of which have just enough access
to just the right services to do their part of the job. An underlying principle is that of least privilege, which is
where each process has exactly enough privileges to accomplish a task, neither more nor less. The goal of
privilege separation is to compartmentalize any corruption and prevent a corrupt process from accessing the
entire system. Privilege separation is applied in OpenSSH by using several levels of access, some higher
some lower, to run sshd(8) (http://man.openbsd.org/sshd.8) and its subsystems and components. The server
➊ starts out with a privileged process ➋ which then creates an unprivileged process ➌ to work with the
network traffic. Once the user has authenticated, another unprivileged process is created ➍ with the
privileges of that authenticated user. See the "Sequ So as seen in the diagram, a total of four processes get
run to create an SSH session. One, the server, remains and listens for new connections and spawn child
processes. Here it is seen waiting for a connection.

$ ps -ax -o user,pid,ppid,state,start,command | awk '/sshd/ || NR==1'
USER PID PPID S STARTED COMMAND
root 1473 1 S 05:44:12 /usr/sbin/sshd

It is this privileged process that listens for the initial connection from clients.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

18 sur 82 19/06/2016 16:33

$ netstat -ntlp | awk '/sshd/ || NR<=2'
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0 :* LISTEN 1473/sshd
tcp6 0 0 :::22 :::* LISTEN 1473/sshd

After the initial connection while waiting for password authentication from user 'fred', a privileged monitor
process supervises an unprivileged process by user 'sshd' which handles contact with the remote user's client.

$ ps -ax -o user,pid,ppid,state,start,command | awk '/sshd/ || NR==1'
USER PID PPID S STARTED COMMAND
root 1473 1 S 05:44:12 /usr/sbin/sshd
root 9481 1473 S 14:40:37 sshd: fred [priv]
sshd 9482 9481 S 14:40:37 sshd: fred [net]

Then after authentication is completed, an established session for user 'fred', a new privieged monitor
process supervises a process running as user 'fred'.

$ ps -ax -o user,pid,ppid,state,start,command | awk '/sshd/ || NR==1'
USER PID PPID S STARTED COMMAND
root 1473 1 S 05:44:12 /usr/sbin/sshd
root 9481 1473 S 14:40:37 sshd: fred [priv]
fred 9579 9481 S 14:42:02 sshd: fred@pts/30

Privilege separation has been the default in OpenSSH since version 3.3[5] Since version 5.9, privilege
separation further applies mandatory restrictions on the system calls the privilege separated child can
perform. The intent is to prevent a compromised privilege separated child from being used to attack other
hosts either by opening sockets and proxying or by probing local kernel attack surface. [6] Since version 6.1,
this sandboxing is the default.

References

"OpenSSH Manual Pages". OpenSSH. http://www.openssh.com/manual.html. Retrieved 2011-02-17.1.
"RFC 4251: The Secure Shell (SSH) Protocol Architecture". 2006-01. http://tools.ietf.org
/html/rfc4251. Retrieved 2013-10-31.

2.

"Why You Need To Stop Using FTP". JDPFu.com. 2011-07-10. http://blog.jdpfu.com/2011/07
/10/why-you-need-to-stop-using-ftp. Retrieved 2012-01-09.

3.

Manolis Tzanidakis (2011-09-09). "Stop Using FTP! How to Transfer Files Securely". Wazi.
http://olex.openlogic.com/wazi/2011/stop-using-ftp-how-to-transfer-files-securely/. Retrieved
2012-01-09.

4.

Nils Provos. "Privilege Separated OpenSSH". University of Michigan. http://www.citi.umich.edu
/u/provos/ssh/privsep.html. Retrieved 2011-02-17.

5.

"OpenSSH 5.9 Release Notes". OpenSSH. 2011-09-06. http://www.openssh.com/txt/release-5.9.
Retrieved 2012-11-17.

6.

Other SSH Implementations

Dropbear

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

19 sur 82 19/06/2016 16:33

Dropbear (https://matt.ucc.asn.au/dropbear/dropbear.html) is a smaller, modular, open source SSH2 client
and server available for all regular POSIX platforms. Dropbear is partially a derivative of OpenSSH. It is
often used in embedded systems because very small binaries can be produced. Functions that are not needed
can be left out of the binary, leaving a lean executable. Thus a working server can be boiled down to 110KB
by trimming away various functions.

Many distributions and products use Dropbear. This includes OpenWRT, gumstix, Tomato Firmware,
PSPSSH, DSLinux, Meego, OpenMoko, Ångström (for Zaurus), ttylinux, Sisela, Trinux, SliTaz, Netcomm,
US Robotics, some Motorola phones, and many, many more.

https://matt.ucc.asn.au/dropbear/dropbear.html

Tectia

Tectia (http://www.tectia.com/en.iw3) is from SSH Communications Security Corporation which is based in
Finland. It is a closed-source SSH client and server with FIPS support.

http://www.ssh.com/?option=com_content&view=article&id=236&Itemid=364

Solaris Secure Shell (SunSSH)

Sun SSH (http://wikis.sun.com/display/SunSSH/SunSSH+FAQ) is fork of OpenSSH 2.3, with many
subsequent changes.

http://hub.opensolaris.org/bin/view/Community+Group+security/SSH

GlobalSCAPE EFT Server

EFT Server (http://www.globalscape.com/eft/) is a closed binary that can include SSH and SFTP modules as
extensions.

http://www.globalscape.com/eft/

Client Applications
On the client side, ssh, scp and sftp provide a wide range of capabilities. Interactive logins and file transfers
are just the tip of the iceberg.

ssh(1) (http://man.openbsd.org/ssh.1) - The basic login shell-like client program.
sftp(1) (http://man.openbsd.org/sftp.1) - FTP-like program that works using the SSH protocol.
scp(1) (http://man.openbsd.org/scp.1) - File copy program that acts like rcp(1).

ssh_config(5) (http://man.openbsd.org/ssh_config.5) - The client configuration file.

The SSH client

ssh is a program which provides the client side for secure, encrypted communications between hosts over an
insecure network. Its main use is for logging into and running programs on a remote host. It can also be used

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

20 sur 82 19/06/2016 16:33

to secure remote X11 connections and and forward arbitrary TCP ports to secure legacy protocols. ssh was
made, in part, to replace insecure tools like rsh and telnet. It has largely succeeded at this goal. rsh and
telnet are rarely seen anymore for interactive sessions or anywhere else. ssh can authenticate using regular
passwords or with the help of a public-private key pair. More options, such as use of Kerberos, smartcards,
or one-time passwords can be configured.

Remote login, authenticating via password:

$ ssh fred@somehost.example.org

Another way of logging in to the same account:

$ ssh -l fred somehost.example.org

Remote programs can be run interactively when the client is run via the shell on the remote host. Or they
can be run directly when passed as an argument to the SSH client. They can even be pre-configured in the
authentication key or the server configuration.

Run uname on the remote machine:

$ ssh -l fred somehost.example.org "uname -a"

See what file systems are mounted and how much space is used there:

$ ssh -l fred somehost.example.org "mount; df -h"

It is possible to configure in great detail which programs are allowed by which accounts. There are many
combinations of options that give extra capabilities, such as re-using a single connection for multiple sessions
or passing through intermediary machines. The level of granularity can be increased even more with the help
of sudo(8) (http://linux.die.net/man/8/sudo).

ssh client environment variables

Of course the foundation of most SSH activity is based upon the shell. Upon a successful connection,
OpenSSH sets several environment variables.

SSH_CLIENT='192.168.223.17 36673 22'
SSH_CONNECTION='192.168.223.17 36673 192.168.223.22 9 22'
SSH_TTY=/dev/pts/6

SSH_CLIENT shows the address of the client system, the outgoing port number on the client system and
the incoming port on the server. SSH_CONNECTION shows the address of the client, the outgoing port on
the client, the address of the server and the incoming port on the server. SSH_TTY names the pseudo-
terminal device, abbreviated pty, on the server used by the connection. For more information on pseudo-
terminals see ptm(4) (http://man.openbsd.org/ptm.4), tty(1) (http://man.openbsd.org/tty.1) and tty(4)
(http://man.openbsd.org/tty.4).

The login session can be constrained to a single program with a predetermined set of parameters using
ForceCommand in the server configuration or Command= in the authorized keys file. In that case an
additional environment variable gets set.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

21 sur 82 19/06/2016 16:33

SSH_ORIGINAL_COMMAND=echo "hello, world"

Other variables are set depending on the user's shell settings and the system's own settings.

SSH client configuration options

Configuration options can be passed to ssh as arguments, see ssh(1) (http://man.openbsd.org/ssh.1) for the
full list.

Connect very verbose output, GSSAPI authention:

$ ssh -vv -K -l account host.example.org

A subset of options can be defined on the server host in the user's own authorized keys file, in conjunction
with specific keys. See sshd(8) (http://man.openbsd.org/sshd.8) for which subset exactly.

command="/usr/local/sbin/backup.sh",no-pty ssh-rsa AAAAB3NzaC1yc2EAAAQEAsY6u71N...
command="/usr/games/wump",no-port-forwarding,no-pty ssh-dss AAAAB3NzaC1kc3MAeELb...
environment="gtm_dist=/usr/local/gtm/utf8",environm ent="gtm_principal_editing=NOINSERT:EDITING" ssh-rs a AAAA8a2s809poloh0

Note that some directives, like setting the environment variables, are disabled by default and must be
changed in the server configuration before available to the client. More configuration directives can be set
by the user in ~/.ssh/config or by the system administrator in /etc/ssh/ssh_config. These same configuration
directives can be passed as arguments using -o. See ssh_config(5) (http://man.openbsd.org/ssh_config.5) for
the full list with descriptions.

$ ssh -o "ServerAliveInterval=60" -o "Compression=yes" -l fred server.example.org

The system administrators of the client host can set some defaults in /etc/ssh/config. Some of these global
settings can be targeted per specific group or per user.

For example, if a particular SSH server is available via port 2022, it may be convenient to have the client use
that port automatically. Some of OpenBSD’s anoncvs servers accept SSH connections on this port. However,
compression should not be used in this case because CVS already uses compression. So that should be
turned off. So, one could specify something like the following in the $HOME/.ssh/config configuration file
so that the default port is 2022 and the connection is made without compression:

Host server.example.org
 Compression no
 Port 2022

See ssh_config(5) (http://man.openbsd.org/ssh_config.5) for the client side and sshd_config(5)
(http://man.openbsd.org/sshd_config.5) for the server side for the full lists with descriptions.

The SFTP client

sftp is an interactive file transfer program which performs all operations over an encrypted SSH transport. It
may also use many features of ssh(1) (http://man.openbsd.org/ssh.1), such as public key authentication and
compression. It is also the name of the protocol used.

The SFTP protocol is similar in some ways to the now venerable File Transfer Protocol (FTP), except that

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

22 sur 82 19/06/2016 16:33

the entire session, including the login, is encrypted. However, SFTP is not FTPS. The latter old-fashioned
FTP tunneled over SSH/SSL. In contrast, SFTP is actually a whole new protocol. sftp can also be made to
start in a specific directory on the remote host.

$ sftp fred@server.example.org:/var/www

Frequently, SFTP is used to connect and log into a specified host and enter an interactive command mode.
See the manual page for sftp(1) (http://man.openbsd.org/sftp.1) for the available interactive commands.
Also, the same configuration options that work for ssh also apply to sftp. sftp accepts all ssh_config options
and these can be passed along as arguments at run time. Some have explicit shortcuts, others can be
specified by naming them in full using the -o option.

$ sftp -o "ServerAliveInterval=60" -o "Compression=yes" fred@server.example.org

Another way to transfer is to write or retrieve files automatically. If a non-interactive authentication method
is used, the whole process can be automatic using batch mode.

$ sftp -b session.batch -i ~/.ssh/some_key_rsa fred @server.example.org

Batch processing only works with non-interactive authentication.

The SCP client

scp is used for encrypted transfers of files between hosts and is used a lot like regular cp. It is based on and a
replacement for rcp from the original Berkeley Software Distribution (BSD), but uses ssh to encrypt the
connection.

The scp client, unlike the SFTP client, is not based on any formal standard. It has aimed at doing more or
less what old rcp does and responding the same way. Since the same program must be used at both ends of
the connection and interoperability is required with other implementations of ssh. Changes in functionality
would probably break that interoperability, so new features are more likely to be added to sftp if at all. Thus,
it is best to lean towards using sftp instead when possible.

Copy from remote to local:

$ scp myaccount@sftp.example.org:*.txt .

Copy from local to remote, recursively:

$ scp -r /etc myaccount@sftp.example.org:.

See also the sftp client above.

GUI Clients

There are a great many graphical utilities that support SFTP and SSH. Many started out as transfer utilities
with the outdated legacy protocol FTP and grew with the times to include SSH and SFTP support. Sadly,
many retain the epithet FTP program despite modernization. Others are more general file managers that
include SFTP support as one means of network transparency. Most if not all provide full SFTP support

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

23 sur 82 19/06/2016 16:33

including kerberos authentication.

Below is a partial list to give an idea of the range of options available.

Bluefish is a website managment tool and web page editor with built in support for SFTP. Closed source
competitors XMetaL and Dreamweaver are said to have at least partial support for SFTP. Nothing for
Quanta+ or Kompozer as of this writing. http://bluefish.openoffice.nl/

Cyberduck is a remote file browser for the Macintosh. It supports an impressive range of protocols in
addition to SFTP. http://cyberduck.ch/

Dolphin is a highly functional file manager for the KDE desktop, but can also be run in other environments.
It includes SFTP support

Fetch, by Fetch Softworks, is a reliable and well-known SFTP client for the Macintosh. It's been around
since 1989, starting life as just an FTP client, and has many useful features combined with ease of use. It is
closed source, but academic institutions are eligible for a free of charge site license.
http://fetchsoftworks.com/fetch/

Filezilla is presented as a FTP utility, but it has built in support for SFTP. It is available for multiple
platforms under the GPL. http://filezilla-project.org/

FireFTP is a SFTP plugin for Mozilla Firefox. Though it is presented as an FTP add-on, it supports SFTP. It
is available under both the MIT license and the GPL. http://fireftp.mozdev.org/

Fugu, developed by the University of Michigan research systems unix group, is a graphical front-end for the
Macintosh. http://rsug.itd.umich.edu/software/fugu/

gFTP is a multi-threaded file transfer client http://www.gftp.org/

JuiceSSH is an SSH Client for Android/Linux. It uses the jsch (http://www.jcraft.com/jsch/) Java
implementation of SSH2. https://juicessh.com/

Konqueror is a file manager and universal document viewer for the KDE desktop, but can also be run in
other environments. It includes SFTP support. http://www.konqueror.org/

lftp is a file transfer program that supports multiple protocols. http://lftp.yar.ru/

Nautilus is the default file manager for the GNOME desktop, but can also be run in other environments. It
includes SFTP support

PCManFM is an extremely fast, lightweight, yet feature-rich file manager with tabbed browsing which is
the default for LXDE. It includes SFTP support. http://wiki.lxde.org/en/PCManFM

PuTTY is another FOSS implementation of Telnet and SSH for legacy and Unix platforms, released under
the MIT license. It includes an SFTP client, PSFTP, in addition to an xterm terminal emulator and other tools
like a key agent, Paegent. It is written and maintained primarily by Simon Tatham.
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

SecPanel is a GUI for managing and running SSH and scp connections. It is not a new implementation of the
protocol or software-suite, but sits on top of either of the SSH software-suites http://themediahost.de
/secpanel/

Thunar is the default file manager for the XFCE desktop. It includes SFTP support. http://docs.xfce.org
/xfce/thunar/start

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

24 sur 82 19/06/2016 16:33

Yafc is Yet Another FTP Client and despite the name supports SFTP. http://yafc.sourceforge.net/

Client Configuration Files
Client configuration files can be per user or system wide, with the former taking precedence over the latter
and run-time arguments in the shell overriding both. In these configuration files, one parameter per line is
allowed with the parameter name followed by its value or values. Empty lines and lines starting with the
hash (#) are ignored. An equal sign (=) can be used instead of whitespace between the parameter name and
the values.

Values are case-sensitive, but parameter names are not.

System-wide Client Configuration Files

System-wide client files set the default configuration for all users of OpenSSH clients on that system. These
defaults can be overridden, in many cases, by the user's own default settings in a local configuration file.
Both can be overridden, in many cases, by specifying various options or parameters at run time. The
prioritization is as follows:

run time arguments via the shell1.
user's own configuration2.
system-wide configuration3.

The first value obtained is used.

/etc/ssh/ssh_config

This file defines all the default settings for the client utilities for all users on that system. it must be readable
by all users. The configuration options are described in detail in ssh_config(5) (http://man.openbsd.org
/ssh_config.5).

Below a shortcut is made for connecting to arc.example.org. It is enough to enter ssh arc and the rest of
the information gets filled in automatically.

Host arc
 Port 2022
 HostName arc.example.org
 User fred
 IdentityFile ~/.ssh/id_rsa_arc

/etc/ssh/ssh_known_hosts

This contains the system-wide list of known host keys used to verify the identity of the remote host and thus
hinder impersonation or eavesdropping. This file should be prepared by the system administrator to contain
the public host keys of all necessary hosts. It should be world-readable.

See ~/.ssh/known_hosts below for more explanation or see sshd(8) (http://man.openbsd.org/sshd.8) for
further details of the format of this file.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

25 sur 82 19/06/2016 16:33

/etc/ssh/sshrc

This file resides on the server and programs in this file are executed there by ssh(1) (http://man.openbsd.org
/ssh.1) when the user logs in, just before the user's shell or designated program is started. It is not run as root,
but instead as the user who is logging in. See the sshd(8) (http://man.openbsd.org/sshd.8) manual page in the
section SSHRC for more information.

User-specific Client Configuration Files

Users can override the default system-wide client settings and choose their own defaults. For situations
where the same change is made repeatedly it can make save work to add them to the user's local
configuration.

Client Side Files

These files reside on the client machine.

~/.ssh/config

The user's own configuration file which, where applicable, overrides the settings in the global client
configuration file, /etc/ssh/ssh_config. The configuration options are described in detail in ssh_config(5)
(http://man.openbsd.org/ssh_config.5).

This file must not be accessible to other users in any way. Set strict permissions: read/write for the user, and
not accessible by others. It may group-writable if and only if that user is the only member of the group in
question.

Local override of defaults

Not all options can be set or overriden by the user. Those options which may be set or overridden by the
user can by defined at the end of the user's configuration, ~/.ssh/config, file by matching all hosts. Those
options which may not be set or overridden will be ignored.

Host *
 ExitOnForwardFailure yes
 Protocol 2
 ServerAliveInterval 400

~/.ssh/known_hosts

As with /etc/ssh/ssh_known_hosts, this file contains the known keys for hosts that have been connected to
in the past and is used to verify the identity of the remote host and protect against impersonation or man-in-
the-middle attacks. With each subsequent connection the key will be compared to the key provided by the
remote server. If there is a match, the connection will proceed. If the match fails, ssh(1)
(http://man.openbsd.org/ssh.1) will fail with an error message. If there is no key at all listed for that remote
host, then the key's fingerprint will be displayed and there will be the option to automatically add the key to
the file. This file can be created and edited manually, but if it does not exist it will be created automatically
by ssh(1) (http://man.openbsd.org/ssh.1) when it first connects to a remote host.

Server Side Files

These files reside on the server, by default in the user's directory. However, the server can be configured to

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

26 sur 82 19/06/2016 16:33

look for them in other locations, if needed.

~/.ssh/authorized_keys

authorized_keys is a one-key-per-line register of public ECDSA, RSA and ED25519 keys that this account
can use to log in with. The file's contents are not highly sensitive, but the recommended permissions are
read/write for the user and not accessible by others. The whole key including options and comments must be
on a single, unbroken line.

ssh-rsa AAAAB3NzaC1yc2EAAA...41Ev521Ei2hvz7S2QNr1zA iVaOFy5Lwc8Lo+Jk=

Lines starting with a hash (#) are ignored. Whitespace is used to separate the key's fields. They are, in
sequence, an optional list of login options, the key type (usually ssh-dss or ssh-rsa), the key itself encoded as
base64, and an optional comment.

If a key is followed by an annotation, the comment does not need to be wrapped in quotes. It has no effect
on what the key does or how it works.

an annotated key
ssh-rsa AAAAB3NzaC1yc2EAAA...zAiVaOFy5Lwc8Lo+Jk= F red @ Project FOOBAR

Keys can be preceded by a comma-separated list of options to affect what happens upon successful login.
See the next section, Available key login options, for details.

launch tinyfugue automatically
command="/usr/bin/tinyfugue" ssh-rsa AAAAB3NzaC1yc2 EAAA...OFy5Lwc8Lo+Jk=

set the PATH
environment="PATH=/bin:/usr/bin/:/opt/gtm/bin" ssh- rsa AAAAB3N...4Y2t1j=

The format of authorized_keys is described in the sshd(8) (http://man.openbsd.org/sshd.8) manual page.
Old keys should be deleted from the file when no longer needed. The server can specify multiple locations
for authorized_keys.

~/.ssh/authorized_principals

By default this file does not exist. If it is specified in sshd_config(5) (http://man.openbsd.org/sshd_config.5),
it contains a list of names which can be used in place of the username when authorizing a certificate. This
option is useful for role accounts, disjoint account namespaces and "user@realm"-style naming policies in
certificates. Principals can also be specified in authorized_keys.

~/.ssh/environment

If the server is configured to accept user-supplied, automatic changes to environment variables as part of the
login process, then these changes can be set in this file.

If the server, the environment file and an authorization key all try to change the same variable, the file
environment takes precedence over what a key might contain. Either one will override any environment
variables that might have been passed by ssh(1) (http://man.openbsd.org/ssh.1) using SendEnv. See also the
AcceptEnv and PermitUserEnvironment directives in the manual page for sshd_config(5)
(http://man.openbsd.org/sshd_config.5).

Authentication keys stored in authorized_keys can also be used to set variables.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

27 sur 82 19/06/2016 16:33

~/.ssh/rc

This is a script which is executed by sh(1) (http://man.openbsd.org/sh.1) just before the user's shell or
command is started. It is not run if ForceCommand is used. The script is run after reading the environment
variables. The corresponding global file, /etc/ssh/sshrc, is not run if the user's rc script exists.

Legacy Files

~/.shosts

~/.rhosts

.rhosts is a legacy from rsh containing a local list of trusted host-user pairs that are allowed to log in. Login
requests matching an entry are granted access.

See also the global list of trusted host-user pairs, /etc/hosts.equiv

rhosts can be used as part of host-based authentication. Otherwise it is recommended not to use rhosts for
authentication, there are a lot of ways to misconfigure the rhosts file.

Available key login options

The login options available for use in the local user authorized keys file might be overridden or blocked by
the server's own settings.

cert-authority

Specifies that the listed key is a certification authority (CA) trusted to validate signed certificates for user
authentication. Certificates may encode access restrictions similar to key options. If both certificate
restrictions and key restrictions are present, then the most restrictive union of the two is applied.

command="program"

Specifies a program, with options, that is executed when this key is used for authentication.

The program is run on a PTY if the client requests it, otherwise the default is to run without a TTY. The
default, running without a TTY, provides an 8-bit clean channel. If the default has been changed, specify
no-pty to get an 8-bit clean channel.

no-pty,command="" ssh-rsa AAAAB3NzaC1yc2EAAA...OFy5 Lwc8Lo+Jk=

Quotes provided in the program's options must be escaped using a backslash. ('\')

command="sh -c \"mysqldump db1 -u fred1 -p\"" ssh-r sa AAAAB3NzaC1yc...Lwc8OFy5Lo+kU=

This option applies to execution of the shell, another program or subsystem. Thus any other program
specified by the user is ignored, but the program originally specified by the client remains available as the
environment variable SSH_ORIGINAL_COMMAND .

This way of forcing a program is useful to restrict a key to a single, specific operation, such as a remote
backup. However, TCP and X11 forwarding are still allowed unless explicitly disabled elsewhere.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

28 sur 82 19/06/2016 16:33

environment=" NAME=value"

Sets the value of an environment variable when this key is used to log in. It overrides default values of the
variable, if it exists. This option can be repeated to set multiple variables. This option is only allowed if the
PermitUserEnvironment option is set. The default is disabled, and this option becomes disabled
automatically when UseLogin is enabled.

from=" pattern-list"

The canonical name of the remote host or its IP address required in addition to the key. Addresses and
hostnames can be listed using a comma-separated list of patterns, see PATTERNS in ssh_config(5)
(http://man.openbsd.org/ssh_config.5) for more information on patterns, or the CIDR address/masklen
notation.

no-agent-forwarding

Forbids authentication agent forwarding when this key is used for authentication.

no-port-forwarding

Forbids TCP forwarding and any port forward requests by the client will return an error when this key is
used for authentication.

no-pty

TTY allocation is prohibited and any request to allocate a PTY will fail.

no-user-rc

Use the no-user-rc option in authorized_keys to disable execution of ~/.ssh/rc

no-X11-forwarding

Prevents X11 forwarding when this key is used for authentication, and requests to forward X11 will return
an error.

permitopen=" host:port"

Limits local port forwarding (ssh -L) to only the specified host and port. IPv6 addresses can be specified
with an alternative syntax: host/port. Multiple permitopen options may be used and must be separated by
commas. No pattern matching is performed on the specified host names, they must be literal host names or
IP addresses. Used in conjunction with agent-forwarding.

principals=" name1[,name2,...]"

Specify a list of names that may be used in place of the username when authorizing a certificate trusted via
the sshd_config(5) (http://man.openbsd.org/sshd_config.5) TrustedCAKeys option.

tunnel=" n"

Select a specific tun(4) (http://man.openbsd.org/tun.4) device on the server. Otherwise when a tunnel device

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

29 sur 82 19/06/2016 16:33

is requested without this option the next available device will be used.

User-specific Keys

ssh(1) (http://man.openbsd.org/ssh.1) uses Ed25519, ECDSA, RSA, or DSA key pairs to verify hosts or
authenticate users. Individual user accounts can maintain their own list of keys or certificates for
authentication or to verify the identity of remote hosts.

Public Keys from other Hosts – ~/.ssh/known_hosts

known_hosts is for verifying the identity of other systems. It contains a list of public keys for all the hosts
which the user has logged into. It can also include public keys for hosts that the user plans to log into but are
not already in the system-wide list of known host keys. ssh(1) (http://man.openbsd.org/ssh.1) automatically
adds keys to the user file, but they can be added manually as well. Usually when connecting to a host for the
first time, ssh(1) (http://man.openbsd.org/ssh.1) adds the remote host's public key to the user's known_hosts
file.

The format is one public key or certificate per unbroken line. Each line in contains a hostname, number of
bits, exponent, and modulus. At the beginning of the line is either the host name or a hash representing the
host name. An optional comment can follow at the end of the line. These can be preceded by an optional
marker to indicate a certificate authority, if a certificate is used instead of a SSH key. These fields are
separated by spaces. It is possible to use a comma-separated list of the hostname.

keys with basic hostnames
anoncvs.fr.openbsd.org,93.184.34.123 ssh-rsa AAAA.. .njvPw==
anoncvs.eu.openbsd.org ssh-rsa AAAAB3Nz...cTqGvaDhg tAhw==

Non-standard ports can be indicated by enclosing the hostname with square brackets and followed by a
colon and the port number.

key with non-standard port
[ssh.example.org]:2222 ssh-rsa AAAAB3Nz...AKy2R2OE=
[127.0.0.2]:4922 ssh-rsa AAAAB4mV...1d6j=
[anga.funkfeuer.at]:2022,[78.41.115.130]:2022 ssh-r sa AAAAB...fgTHaojQ==

Hostname patterns can be created using "* " and "?" as wildcards and "!" to indicate negation.

Up to one optional marker per line is allowed. If present it must be either @cert-authority or @revoked.
The former shows that the key is a certificate authority key, the latter flags the key as revoked and not
acceptable for use.

See sshd(8) (http://man.openbsd.org/sshd.8) for further details of the format of this file and ssh-keygen(1)
(http://man.openbsd.org/ssh-keygen.1) for managing the keys.

Manually Adding Public Keys to ~/.ssh/known_hosts

Manually adding public host keys to known_hosts is a matter of adding one unbroken line per key. How the
key is obtained is not important, as long as it is complete, valid and guaranteed to be the real key and not
a fake. ssh-keyscan(1) (http://man.openbsd.org/ssh-keyscan.1) can fetch a key and ssh-keygen(1)
(http://man.openbsd.org/ssh-keygen.1) can be used to show the fingerprint for verification. See examples in
the cookbook chapter for methods of verification. The corresponding system-wide file is /etc/ssh
/ssh_known_hosts

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

30 sur 82 19/06/2016 16:33

Local User's Public / Private Key Pairs

Users might have a variety of their own ECDSA, Ed25519, RSA and DSA keys around for various tasks and
projects. The naming convention for keys is only a convention, but recommended to follow anyway. Public
keys usually have the same name as the private key, but with .pub appended to the name.

Public Keys – ~/.ssh/id_dsa.pub ~/.ssh/id_ecdsa.pub ~/.ssh/id_ed25519.pub ~/.ssh/id_rsa.pub

Public keys are used for authentication. Public keys are not sensitive and are allowed to be readable by
anyone, unlike the private keys, but don't need to be.

Private Keys – ~/.ssh/id_dsa ~/.ssh/id_ecdsa ~/.ssh/id_ed25519 ~/.ssh/id_rsa

These private keys are sensitive data and should be readable by the user but not accessible by others, mode
0600. The directory they are in should also have mode 0700 or 0500. If a private key file is accessible by
others, ssh(1) (http://man.openbsd.org/ssh.1) will ignore it.

It is possible to specify a passphrase when generating the key which will be used to encrypt the sensitive part
of this file using AES128. Until version 5.3, the cipher 3DES was used to encrypt the passphrase. Old keys
using 3DES that are given new passphrases will use AES128 when they are modified.

Legacy Protocol Keys ~/.ssh/identity ~/.ssh/identity.pub

identity and identity.pub are for ssh protocol version 1, and thus deprecated.

User-specific Public Key Authentication

Users can authenticate using a private key stored on their system or fetched from a smartcard if the
corresponding public key is stored on the system being connected to in authorized_keys. It is not highly
sensitive, but the recommended permissions are read/write for the user, and not accessible by others.

The keys can be preceded by a comma-separated list of options. The whole key must be on a single,
unbroken line. No spaces are permitted, except within double quotes. Any text after the key is considered a
comment. See the section above on the authorized_keys file for more discussion. The authorized_keys file
is a one-key-per line register of public RSA and DSA keys that can be used to log in as this user.

User-specified Host-based Authentication Configuration is also possible using the ~/.shosts, ~/.rhosts, ~/.ssh
/environment, and ~/.ssh/rc files.

Managing Keys

When working with keys there are some basic, common sense actions that should take place to prevent
problems.

Keys should use strong pass phrases. If autonomous logins are required, then the keys should be first loaded
into an agent and used from there. See ssh-add(1) (http://man.openbsd.org/ssh-add.1) to get started there. It
uses ssh-agent(1) (http://man.openbsd.org/ssh-agent.1) which many systems have installed and some have
running by default.

Keys should always be stored in protected locations, even on the client side. This is especially important for

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

31 sur 82 19/06/2016 16:33

private keys. The private keys should not have read permissions for any user or group other than the owner.
They should also be kept in a directory that is not accessible by anyone other than the owner in order to limit
exposure.

Old and unused keys should be removed from the server. In particular, keys without a known, valid purpose
should be removed and not allowed to accumulate. Using the comment field in the public key for annotation
can help eliminate some of the confusion as to the purpose and owner when time has passed. Along those
lines, keys should be rotated at intervals. In practice, rotation means generating new key pairs and removing
the old ones. This gives a chance to remove old and unused keys. It is also an opportunity to review access
needs, whether access is required and if so at what level.

Following the principle of least privilege can limit the chance for accidents or abuse. If a key is only needed
to run a specific application or script, then its login options should be limited to just what is needed. See
sshd(8) (http://man.openbsd.org/sshd.8) for the 'AUTHORIZED_KEYS FILE FORMAT' section on key
login options. For root level access, it is important to remember to configure /etc/sudoers appropriately.
Access there can be granted to a specific application and even limit that application to specific options.

Pattern Matching in OpenSSH Configuration
A pattern consists of zero or more non-whitespace characters. An asterisk (*) matches zero or more
characters in a row, and a question mark (?) matches exactly one character. For example, to specify a set of
declarations that apply to any host in the ".co.uk" set of domains in ssh_config, the following pattern could
be used:

Host *.co.uk

The following pattern would match any host in the 192.168.0.1 - 192.168.0.9 range:

Host 192.168.0.?

A pattern-list is a comma-separated list of patterns. The following list of patterns match hosts in the ".co.uk"
or ".ac.uk" domains.

Host *.co.uk, *.ac.uk

Individual patterns by themselves or as part of a pattern-lists may be negated by preceding them with an
exclamation mark (!). The following will match any host from example.org except for gamma.

Host *.example.org !gamma.example.org

For example, to allow a key to be used from anywhere within an organisation except from the dialup pool,
the following entry in authorized_keys could be used:

from="!*.dialup.example.com,*.example.com"

See also glob(7) (http://man.openbsd.org/glob.7)

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

32 sur 82 19/06/2016 16:33

Utilities
ssh-agent(1) (http://man.openbsd.org/ssh-agent.1) - An authentication agent that can store private
keys.
ssh-add(1) (http://man.openbsd.org/ssh-add.1) - Tool which adds or removes keys in the above agent.
ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1) - Key generation tool.
ssh-keyscan(1) (http://man.openbsd.org/ssh-keyscan.1) - Utility for gathering public host keys from a
number of hosts.
ssh-vulnkey(1) - Check key against blacklist of compromised keys
ssh-copy-id(1) (http://linux.die.net/man/1/ssh-copy-id) - Install a public key in a remote machine's
authorized_keys

ssh-agent

ssh-agent is a tool to hold private keys in memory for re-use during a session. Usually it is started at the
beginning of a session and subsequent windows or programs run as clients to the agent.

ssh-add

ssh-add is a tool to load key identities into an agent for re-use. It can also be used to remove identities from
the agent. The agent holds the private keys used for authentication.

ssh-keyscan

ssh-keyscan has been part of the OpenSSH suite since OpenSSH version 2.5.1 and is used to retrieve public
keys. Keys retrieved using ssh-keyscan, or any other method, must be verified by checking the key
fingerprint to ensure the authenticity of the key and reduce the possibility of a man-in-the-middle attack.
The default is to request a ECDSA key using SSH protocol 2. David Mazieres wrote the initial version of
ssh-keyscan and Wayne Davison added support for SSH protocol version 2.

ssh-keygen

ssh-keygen is used to generate key pairs for use in authentication, update and manage keys or to verify key
fingerprints. It can generate either ECDSA, Ed25519, RSA or DSA keys and can do the following:

generate new key pairs, either ECDSA, Ed25519, RSA or DSA
remove keys from known hosts
regenerate a public key from a private key
change the passphrase of a private key
change the comment text of a private key
show the fingerprint of a specific public key
show ASCII art fingerprint of a specific public key
load or read a key to or from a smartcard, if the reader is available

If the legacy protocol, SSH1, is used, then ssh-keygen can only generate RSA keys.

One important use for key fingerprints is when connecting to a machine for the first time. A fingerprint is a

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

33 sur 82 19/06/2016 16:33

hash or digest of the public key. Fingerprints can be sent ahead of time out of band via post, fax, SMS or
other means not related to the Internet.

The verification data for the key should be sent out of band, not done via the Internet. It can be sent ahead
of time by post, fax, SMS or a phone call instead or some other way you can be sure it is an authentic and
unchanged key.

$ ssh -l fred zaxxon.example.org
The authenticity of host 'zaxxon.example.org (203.0 .113.114)' can't be established.
RSA key fingerprint is SHA256:DnCHntWa4jeadiUWLUPGg 9FDTAopFPR0c5TgjU/iXfw.
Are you sure you want to continue connecting (yes/n o)?

If you see that and the key matches what your were given in advance, the connection is probably good. If
you see that and the key is different than what you were given in advance, then stop and disconnect and get
on the phone or voip to work out the mistake. Once the SSH client has accepted the key from the server, it is
saved in known_hosts.

$ ssh -l fred galaga.example.org
@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGE D! @
@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NAST Y!
Someone could be eavesdropping on you right now (ma n-in-the-middle attack)!
It is also possible that a host key has just been c hanged.
The fingerprint for the ECDSA key sent by the remot e host is
SHA256:QIWi4La8svQSf5ZYow8wBHN4tF0jtRlkIaLCUQRlxRI.
Please contact your system administrator.
Add correct host key in /home/fred/.ssh/known_hosts to get rid of this message.
Offending ECDSA key in /home/fred/.ssh/known_hosts: 1
ECDSA host key for galaga.example.org has changed a nd you have requested strict checking.
Host key verification failed.

If you start to connect to a known host and you get an error like the one above, then either the first
connection was to an impostor or the current connection is to an impostor, or something very foolish was
done to the machine. Regardless, disconnect and don't try to log in. Contact the system administrator out of
band to find out what is going on.[1] It is possible that the server was reinstalled, either the whole OS or just
the OpenSSH server, without saving the old keys resulting in new keys being generated. Either way, check
with the system administrator before connecting to be sure.

It is possible to use more than one key per account or the same key on more than one machine. Single-use
keys allow some remote data transfer tasks to be automated fairly securely.

The public keys of the hosts you have verified the connections to are stored in known_hosts whereas the
public keys of the users you accept logins from are kept in authorized_keys. There are also global files kept
on each machine though each account has its own local ones.

When generating keys use good, solid passphrases. Good passphrases are 10 to 30 characters in length and
are not simple sentences or otherwise easily guessable words or phrases from any language. It should contain
a mixture of upper and lowercase letters, numbers, and non-alphanumeric characters. Passphrases can be
changed later, but there is no way to recover a lost passphrase. If the passphrase is lost or forgotten, the key
is useless and must be replaced with a new key pair. Hashed host names and addresses can be looked up in
known_hosts using -F or -R can be used to delete them.

$ ssh-keygen -F sftp.example.org -f ~/.ssh/known_ho sts
Host sftp.example.org found: line 7 type RSA
|1|slYCk3msDPyGQ8l0lq82IbUTzBU=|KN7HPqVnJHOFX5LFmTX S6skjK4o= ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAIEA3cqqA 6fZtgexZ7+4wxoLN1+Y

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

34 sur 82 19/06/2016 16:33

ssh-vulnkey

ssh-vulnkey is included in some distros to check a key against a blacklist of compromised keys. The
blacklist was made necessary when a broken version of OpenSSL was distributed by some distros[2],
resulting in bad keys that were easily predicted and compromised. Keys made while that broken version was
in use that are found to have been compromised cannot be repaired and must be replaced. The problem has
since been fixed and new keys should be all right.

ssh-copy-id

ssh-copy-id is included in some distros to install a public key into a remote machine's authorized_keys file.
It is a simple shell script and the authorized_keys file should still be checked manually after first login to
verify that everything went ok and that the key was copied as it should be.

References

Brian Hatch (2004). "SSH Host Key Protection". SecurityFocus. http://www.securityfocus.com
/infocus/1806. Retrieved 2013-04-14.

1.

Jake Edge (2008). "Debian vulnerability has widespread effects". LWN. https://lwn.net/Articles
/282230/. Retrieved 2013-04-14.

2.

Logging and Troubleshooting
Both the OpenSSH client and server offer a lot of choice as to where the logs are written and how much
information is collected.

A prerequisite for logging is having an accurate system clock using the Network Time Protocol, NTP. Having
the NTP server running provides time synchronization with the world. The more accurate the time stamp in
the log is, the faster it is to coordinate forensics between machines or sites or service providers. If you have
to contact outside parties like a service provider, progress can usually only be made with very exact times.

Server Logs

By default sshd(8) (http://man.openbsd.org/sshd.8) logs to the system logs, with log level INFO and syslog
facility AUTH. So the place to look for log data from sshd(8) (http://man.openbsd.org/sshd.8) is in /var/log
/auth.log. These defaults can be overridden using the SyslogFacility and LogLevel directives. Below is a
typical server startup entry in the authorization log.

Mar 19 14:45:40 eee sshd[21157]: Server listening o n 0.0.0.0 port 22.
Mar 19 14:45:40 eee sshd[21157]: Server listening o n :: port 22.

In most cases the default level of logging is fine, but during initial testing of new services or activities it is
sometimes necessary to have more information. Debugging info usually goes to stderr. The log excerpt
below show the same basic server start up with increasing detail. Contrast debug level 1 below with the
default above:

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

35 sur 82 19/06/2016 16:33

debug1: sshd version OpenSSH_6.8, LibreSSL 2.1
debug1: private host key #0: ssh-rsa SHA256:X9e6YzN XMmr1O09LVoQLlCau2ej6TBUxi+Y590KVsds
debug1: private host key #1: ssh-dss SHA256:XcPAY4s oIxU2IMtYmnErrVOjKEEvCc3l5hOctkbqeJ0
debug1: private host key #2: ecdsa-sha2-nistp256 SH A256:QIWi4La8svQSf5ZYow8wBHN4tF0jtRlkIaLCUQRlxRI
debug1: private host key #3: ssh-ed25519 SHA256:fRW rx5HwM7E5MRcMFTdH95KwaExLzAZqWlwULyIqkVM
debug1: rexec_argv[0]='/usr/sbin/sshd'
debug1: rexec_argv[1]='-d'
debug1: Bind to port 22 on 0.0.0.0.
Server listening on 0.0.0.0 port 22.
debug1: Bind to port 22 on ::.
Server listening on :: port 22.

And same at the most verbose level, DEBUG3:

debug2: load_server_config: filename /etc/ssh/sshd_ config
debug2: load_server_config: done config len = 217
debug2: parse_server_config: config /etc/ssh/sshd_c onfig len 217
debug3: /etc/ssh/sshd_config:52 setting AuthorizedK eysFile .ssh/authorized_keys
debug3: /etc/ssh/sshd_config:86 setting UsePrivileg eSeparation sandbox
debug3: /etc/ssh/sshd_config:104 setting Subsystem sftp internal-sftp
debug1: sshd version OpenSSH_6.8, LibreSSL 2.1
debug1: private host key #0: ssh-rsa SHA256:X9e6YzN XMmr1O09LVoQLlCau2ej6TBUxi+Y590KVsds
debug1: private host key #1: ssh-dss SHA256:XcPAY4s oIxU2IMtYmnErrVOjKEEvCc3l5hOctkbqeJ0
debug1: private host key #2: ecdsa-sha2-nistp256 SH A256:QIWi4La8svQSf5ZYow8wBHN4tF0jtRlkIaLCUQRlxRI
debug1: private host key #3: ssh-ed25519 SHA256:fRW rx5HwM7E5MRcMFTdH95KwaExLzAZqWlwULyIqkVM
debug1: rexec_argv[0]='/usr/sbin/sshd'
debug1: rexec_argv[1]='-ddd'
debug2: fd 3 setting O_NONBLOCK
debug1: Bind to port 22 on 0.0.0.0.
Server listening on 0.0.0.0 port 22.
debug2: fd 4 setting O_NONBLOCK
debug1: Bind to port 22 on ::.

Note that failed login attempts are not logged until half the value in directive MaxAuthTries is exceeded.
Below is how the default log looks after some failed attempts:

...
Nov 23 20:31:12 server sshd[15798]: Connection from 188.124.3.41 port 32889
Nov 23 20:31:14 server sshd[15798]: Failed password for root from 188.124.3.41 port 32889 ssh2
Nov 23 20:31:14 server sshd[29323]: Received discon nect from 188.124.3.41: 11: Bye Bye
Nov 23 22:04:56 server sshd[25438]: Connection from 200.54.84.233 port 45196
Nov 23 22:04:58 server sshd[25438]: Failed password for root from 200.54.84.233 port 45196 ssh2
Nov 23 22:04:58 server sshd[30487]: Received discon nect from 200.54.84.233: 11: Bye Bye
Nov 23 22:04:59 server sshd[21358]: Connection from 200.54.84.233 port 45528
Nov 23 22:05:01 server sshd[21358]: Failed password for root from 200.54.84.233 port 45528 ssh2
Nov 23 22:05:01 server sshd[2624]: Received disconn ect from 200.54.84.233: 11: Bye Bye
...

It is usually a good idea not to allow root login. That simplifies log analysis greatly. It in particular eliminates
the time consuming question of who is trying to get in and why. Tasks that need root level access can be
given it through custom-made entries in /etc/sudoers. People that need root level access can gain it through
sudo or su.

Successful logins

By default, the server does not store much information about user transactions. That is a good thing. It is
also a good thing to recognize when the system is operating as it should. Here is a successful SSH login:

Mar 14 19:50:59 server sshd[18884]: Accepted passwo rd for fred from 192.0.2.60 port 6647 ssh2

And one using a key for authentication, which shows the SHA256 hash in base64.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

36 sur 82 19/06/2016 16:33

Mar 14 19:52:04 server sshd[5197]: Accepted publick ey for fred from 192.0.2.60 port 59915 ssh2: RSA SH A256:5xyQ+PG1Z3CIiS

Prior to 6.8, the fingerprint was a hexadecimal MD5 hash.

Jan 28 11:51:43 server sshd[5104]: Accepted publick ey for fred from 192.0.2.60 port 60594 ssh2: RSA e8 :31:68:c7:01:2d:25:

In older versions of OpenSSH, prior to 6.3, the key fingerprint is missing.

Jan 28 11:52:05 server sshd[1003]: Accepted publick ey for fred from 192.0.2.60 port 20042 ssh2

A password authentication for SFTP, using the internal-sftp subsystem and with logging for that subsystem
set to INFO.

Mar 14 20:14:18 server sshd[19850]: Accepted passwo rd for fred from 192.0.2.60 port 59946 ssh2
Mar 14 20:14:18 server internal-sftp[11581]: sessio n opened for local user fred from [192.0.2.60]

Here is a successful SFTP login using an RSA key for authentication.

Mar 14 20:20:53 server sshd[10091]: Accepted public key for fred from 192.0.2.60 port 59941 ssh2: RSA S HA256:LI/TSnwoLryuY
Mar 14 20:20:53 server internal-sftp[31070]: sessio n opened for local user fred from [192.0.2.60]

Additional data, such as connection duration, can be logged with the help of xinetd.

Logging SFTP File Transfers

SFTP file transfers can be logged using LogLevel INFO or VERBOSE. The LogLevel for the SFTP server
can be set in sshd_config separately from the general SSH server.

Subsystem internal-sftp -l INFO

By default the SFTP messages will also end up in auth.log but it is possible to filter these messages to their
own file by reconfiguring the system logger, usually rsyslogd(8) or syslogd(8). Sometimes this is done by
changing the log facility code from the default of AUTH. Available options are LOCAL0 through LOCAL7,
plus, less usefully, DAEMON and USER.

Subsystem internal-sftp -l INFO -f LOCAL6

If new system log files are assigned, it is important to remember them in log rotation, too.

The following log excerpts are generated from using LogLevel INFO. A session will start with an open and
end with a close. The number in the brackets is the process id for that SFTP session and will be the only way
to follow a session in the logs.

Oct 22 11:59:45 server internal-sftp[4929]: session opened for local user fred from [192.0.2.33]
...
Oct 22 12:09:10 server internal-sftp[4929]: session closed for local user fred from [192.0.2.33]

Here is an SFTP upload of a small file of 928 bytes named foo to user fred's home directory.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

37 sur 82 19/06/2016 16:33

Oct 22 11:59:50 server internal-sftp[4929]: open "/ home/fred/foo" flags WRITE,CREATE,TRUNCATE mode 066 4
Oct 22 11:59:50 server internal-sftp[4929]: close " /home/fred/foo" bytes read 0 written 928

And a directory listing in the same session in the directory /var/www.

Oct 22 12:07:59 server internal-sftp[4929]: opendir "/var/www"
Oct 22 12:07:59 server internal-sftp[4929]: closedi r "/var/www"

And lastly a download of the same small 928-byte file called foo from the user fred's home directory.

Oct 22 12:08:03 server internal-sftp[4929]: open "/ home/fred/foo" flags READ mode 0666
Oct 22 12:08:03 server internal-sftp[4929]: close " /home/fred/foo" bytes read 928 written 0

Successful transfers will be noted by a close message. Attempts to download (open) files that do not exist
will be followed by a sent status No such file message on a line of its own instead of a close. Files that exist
but that the user is not allowed to read will create a sent status Permission denied message.

Logging Chrooted SFTP

Logging the built-in sftp-subsystem inside a chroot jail, defined by ChrootDirectory , needs a ./dev/log
node to exist inside the jail. This can be done by having the system logger such as syslogd add additional log
sockets when starting up. On some systems that is as simple as adding more flags, like "-u -a /chroot
/dev/log", in /etc/rc.conf.local or whatever the equivalent startup script may be.

Here is a SFTP login with password to a chroot jail, using log level Debug3 for the SFTP-subsystem logging
a file upload:

Jan 28 12:42:41 server sshd[26299]: Connection from 192.0.2.60 port 47366
Jan 28 12:42:42 server sshd[26299]: Failed none for fred from 192.0.2.60 port 47366 ssh2
Jan 28 12:42:44 server sshd[26299]: Accepted passwo rd for fred from 192.0.2.60 port 47366 ssh2
Jan 28 12:42:44 server sshd[26299]: User child is o n pid 21613
Jan 28 12:42:44 server sshd[21613]: Changed root di rectory to "/home/fred"
Jan 28 12:42:44 server sshd[21613]: subsystem reque st for sftp
Jan 28 12:42:44 server internal-sftp[2084]: session opened for local user fred from [192.0.2.60]
Jan 28 12:42:58 server internal-sftp[2084]: open "/ docs/somefile.txt" flags WRITE,CREATE,TRUNCATE mode 0644
Jan 28 12:42:58 server internal-sftp[2084]: close “ /docs/somefile.txt” bytes read 0 written 400

Remember that SFTP is a separate subsystem and that like the file creation mode, the log level and facility
are set separately from the SSH server in sshd_config(5) (http://man.openbsd.org/sshd_config.5):

Subsystem internal-sftp -l ERROR

Logging Revoked Keys

If the RevokedKeys directive is used to point to a list of public keys that have been revoked, sshd(8)
(http://man.openbsd.org/sshd.8) will make a log entry when access is attempted using a revoked key. The
entry will be the same whether a plaintext list of public keys is used or if a binary Key Revocation List
(KRL) has been generated.

If password authentication is allowed, and the user tries it, then after the key authentication fails there will
be a record of password authentication.

Mar 14 20:36:40 server sshd[29235]: error: Authenti cation key RSA SHA256:jXEPmu4thnubqPUDcKDs31MOVLQJH 6FfF1XSGT748jQ revo

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

38 sur 82 19/06/2016 16:33

...
Mar 14 20:36:45 server sshd[29235]: Accepted passwo rd for fred from 192.0.2.10 port 59967 ssh2

If password authentication is not allowed, sshd(8) (http://man.openbsd.org/sshd.8) will close the connection
as soon as the key fails.

Mar 14 20:38:27 server sshd[29163]: error: Authenti cation key RSA SHA256:jXEPmu4thnubqPUDcKDs31MOVLQJH 6FfF1XSGT748jQ revo
...
Mar 14 20:38:27 server sshd[29163]: Connection clos ed by 192.0.2.10 [preauth]

The same happens if the user cancels the connection without trying a password after the key attempt fails. In
both cases, there will be no clue as to which user tried to log on, so it will be necessary to try to look up the
key by its fingerprint from your archive of old keys using ssh-keygen -lf and read the key's comments.

On the client side, no warning or error will be given if a revoked key is tried. It will just fail and the next key
or method will be tried.

Brute force and Hail Mary attacks

It’s fairly common to see failed login attempts almost as soon as the server is connected to the net. Brute
force attacks, where one machine hammers on a few accounts trying to find a valid password, are becoming
rare. In part this is because packet filters, like IP Tables for Linux and PF for BSD, can limit the number and
rate of connection attempts from a single host. The server configuration directive MaxStartups can limit the
number of simultaneous, unauthenticated connections.

...
Nov 23 19:35:42 server sshd[14000]: Connection from 116.28.64.132 port 55680
Nov 23 19:35:44 server sshd[14000]: Failed password for root from 116.28.64.132 port 55680 ssh2
Nov 23 19:35:44 server sshd[11034]: Received discon nect from 116.28.64.132: 11: Bye Bye
Nov 23 19:35:45 server sshd[3096]: Connection from 116.28.64.132 port 55932
Nov 23 19:35:48 server sshd[3096]: Failed password for root from 116.28.64.132 port 55932 ssh2
Nov 23 19:35:48 server sshd[11289]: Received discon nect from 116.28.64.132: 11: Bye Bye
...

The way to deal with brute force attacks is to customize the server host’s packet filter to limit the attacks or
even temporarily block machines that overload the maximum number or rate of connections. Optionally, one
should also contact the attacker’s net block owner with the IP address and exact date and time of the
attacks.

A kind of attack common at the time of this writing is one which is distributed over a large number of
compromised machines, each playing only a small role in attacking the server.

To deal with Hail Mary attacks, contact the attacker’s net block owner. A form letter with a cut-and-paste
excerpt from the log is enough, if it gives the exact times and addresses. Alternately, teams of network or
system administrators can work to pool data to identify and blacklist the compromised hosts participating in
the attack.

Client Logging

The OpenSSH the client normally sends log information to stderr. The -y option can be used to send output
to the system logs, managed by syslogd or something similar. Or the -E option sends log output to a
designated file instead of stderr. Working with the system logs or separate log files are something which can
be useful when running ssh in automated scripts. Below is a connection to an interactive shell with the
normal level of client logging:

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

39 sur 82 19/06/2016 16:33

$ ssh -l fred server.example.org
fred@server.example.org‘s password:
Last login: Thu Jan 27 13:21:57 2011 from 192.168.1 1.1

The same connection at the first level of verbosity gives lots of debugging information, 42 lines more.

$ ssh -v -l fred server.example.org
OpenSSH_6.8, LibreSSL 2.1
debug1: Reading configuration data /etc/ssh/ssh_con fig
debug1: Connecting to server.example.org [198.51.10 0.20] port 22.
debug1: Connection established.
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_rsa type - 1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_rsa-cert t ype -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_dsa type - 1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_dsa-cert t ype -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_ecdsa type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_ecdsa-cert type -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_ed25519 ty pe -1
debug1: key_load_public: No such file or directory
debug1: identity file /home/fred/.ssh/id_ed25519-ce rt type -1
debug1: Enabling compatibility mode for protocol 2. 0
debug1: Local version string SSH-2.0-OpenSSH_6.8
debug1: Remote protocol version 2.0, remote softwar e version OpenSSH_6.7
debug1: match: OpenSSH_6.7 pat OpenSSH* compat 0x04 000000
debug1: SSH2_MSG_KEXINIT sent
debug1: SSH2_MSG_KEXINIT received
debug1: kex: server->client aes128-ctr umac-64-etm@ openssh.com none
debug1: kex: client->server aes128-ctr umac-64-etm@ openssh.com none
debug1: expecting SSH2_MSG_KEX_ECDH_REPLY
debug1: Server host key: ecdsa-sha2-nistp256 SHA256 :CEXGTmrVgeY1qEiwFe2Yy3XqrWdjm98jKmX0LK5mlQg
debug1: Host '198.51.100.20' is known and matches t he ECDSA host key.
debug1: Found key in /home/fred/.ssh/known_hosts:2
debug1: SSH2_MSG_NEWKEYS sent
debug1: expecting SSH2_MSG_NEWKEYS
debug1: SSH2_MSG_NEWKEYS received
debug1: Roaming not allowed by server
debug1: SSH2_MSG_SERVICE_REQUEST sent
debug1: SSH2_MSG_SERVICE_ACCEPT received
debug1: Authentications that can continue: publicke y,password,keyboard-interactive
debug1: Next authentication method: publickey
debug1: Trying private key: /home/fred/.ssh/id_rsa
debug1: Trying private key: /home/fred/.ssh/id_dsa
debug1: Trying private key: /home/fred/.ssh/id_ecds a
debug1: Trying private key: /home/fred/.ssh/id_ed25 519
debug1: Next authentication method: keyboard-intera ctive
debug1: Authentications that can continue: publicke y,password,keyboard-interactive
debug1: Next authentication method: password
debug1: Authentication succeeded (password).
Authenticated to server.example.org ([198.51.100.20]:22).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: client_input_global_request: rtype hostkeys -00@openssh.com want_reply 0
debug1: client_input_channel_req: channel 0 rtype e xit-status reply 0
debug1: client_input_channel_req: channel 0 rtype e ow@openssh.com reply 0
debug1: channel 0: free: client-session, nchannels 1
debug1: fd 2 clearing O_NONBLOCK
Last login: Sat Mar 14 21:31:33 2015 from 192.0.2.1 11

...

The same login with the maximum of verbosity, -vvv, gives around 150 lines of debugging information.
Remember that debugging information is sent to stderr rather than stdout. Regular pipes and redirects work
only with stdout so output on stderr must be sent to stdout first if one is going to capture it at the same time.
That is done with a redirect, 2>&1. Mind the spaces, or lack of them:

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

40 sur 82 19/06/2016 16:33

This will only capture the session in a file, debugging info goes only to the screen, not to the output log:

$ ssh -vvv -l fred somehost.example.org | tee ~/s sh-output.log

The tool tee(1) (http://man.openbsd.org/tee.1) is like a T-pipe and sends output two directions, one to stdout
and one to a file.

This will capture both debugging info and session text:

$ ssh -vvv -l fred somehost.example.org 2>&1 | t ee ~/ssh-output.log

Also, the escape sequences ~v and ~V can be used to increase or decrease the verbosity of an existing
connection.

$ sftp -v -o "IdentityFile=~/.ssh/weblog.key_rsa" f red@server.example.org

The debugging verbosity on the client can be increased just like on the server.

$ sftp -vvv -o "IdentityFile=~/.ssh/weblog.key_rsa" fred@server.example.org

The extra information can be useful to see exactly what is being sent to or requested of the server.

Even when a connection is already established, it is possible to change the verbosity of the client. Using the
escape sequences ~v and ~V it is possible to raise and lower the logging level for the client in an existing
connection. In order, it will raise the log level to VERBOSE, DEBUG, DEBUG2, and DEBUG3, if starting
from the default of INFO. When lowering the log level, it will descend through ERROR, FATAL, to QUIET
if starting from the default of INFO.

Debugging and Troubleshooting

The server logs are your best friend when troubleshooting. It may be necessary to turn up the log level there
temporarily to get more information. It is then also necessary to turn them back to normal after things are
fixed to avoid privacy problems or excessively large log files.

For example, the SFTP-subsystem logging defaults to ERROR, reporting only errors. To track transactions
made by the client, change the log level to INFO or VERBOSE:

Subsystem internal-sftp -l INFO

Caution. Again, operating with elevated logging levels would violate the privacy of users, in addition to
filling a lot of disk space, and should generally not be used in production once the changes are figured out.

Also, the manual pages for OpenSSH are very well written and many times problems can be solved by
finding the right section within the right manual page. At the very minimum, it is important to skim through
the four main manual pages for both the programs and their configuration and become familiar with at least
the section headings.

ssh(1) (http://man.openbsd.org/ssh.1)
ssh_config(5) (http://man.openbsd.org/ssh_config.5)
sshd(8) (http://man.openbsd.org/sshd.5)

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

41 sur 82 19/06/2016 16:33

sshd_config(5) (http://man.openbsd.org/sshd_config.5)

Then once the right section is found in the manual page, go over it in detail and become familiar with its
contents. The same goes for the other OpenSSH manual pages, depending on the activity. Be sure to use the
version of OpenSSH available for your system and the corresponding manual pages, preferably those that
are installed on your system to avoid a mismatch. In some cases, the client and the server will be of different
versions, so the manual pages for each must be looked up separately.

With a few exceptions below, specific examples of troubleshooting are usually given in the cookbook section
relevant to a particular activity. So, for example, sorting problems with authentication keys is done in the
section on Public Key Authentication itself.

Debugging a script, configuration or key that uses sudo

Usually log levels need only be changed when writing and testing a script, new configurations, new keys, or
all three at once. When working with sudo, it is especially important to see exactly what the client is sending
so as to enter the right pattern into /etc/sudoers for safety. Using the lowest level of verbosity, the exact
string being sent by the client to the remote server is shown in the debugging output:

$ rsync -e "ssh -v -i /home/webmaint/.ssh/bkup_key -l webmaint" \
 -a server.example.org:/var/www/ var/backup/ www/
...
debug1: Authentication succeeded (publickey).
Authenticated to server.example.org ([192.0.2.20]:2 2).
debug1: channel 0: new [client-session]
debug1: Requesting no-more-sessions@openssh.com
debug1: Entering interactive session.
debug1: Sending command: rsync --server --sender -v logDtpre.if . /var/www/
receiving incremental file list
...

What sudoers then needs is something like the following, assuming account webmaint is in the group
webmasters:

%webmasters ALL=(ALL) NOPASSWD: /usr/local/bin/rsyn c --server \
--sender -vlogDtpre.if . /var/www/

The same method can be used to debug new server configurations or key logins. Once things are set to run
as needed, the log level settings can be lowered back to INFO for sshd(8) (http://man.openbsd.org/sshd.8)
and to ERROR for internal-sftp . Additionally, once the script is left to run in fully automated mode, the
client logging information can be set use the syslog system module instead of stderr by setting the -y option
when it is launched.

Debugging a server configuration

Running the server in debug mode provides a lot of information about the connection and a smaller amount
about the server configuration. The server's debugging level (-d) can be raised once, twice (-dd) or thrice
(-ddd).

$ /usr/sbin/sshd -d

Note that the server in this case does not detach and become a daemon, so it will terminate when the SSH
connection terminates. To make a subsequent connection from the client, the server must be started again.
Though in some ways this is a hassle, it does make sure that session data is a unique set and not mixes of
multiple sessions and thus possibly different configurations. Alternately, another option (-e) when debugging

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

42 sur 82 19/06/2016 16:33

sends the debugging data to stderr to keep the system logs clean.

In recent versions of OpenSSH, it is also possible to log the debug data from the system logs directly to a
separate file and keep noise out of the system logs. Since OpenSSH 6.3, the option -E will append the debug
data to a particular log file instead of sending it to the system log. This facilitates debugging live systems
without cluttering the system logs.

$ /usr/sbin/sshd -E /home/fred/sshd.debug.log

On older versions of OpenSSH, if you need to save output to a file while still viewing it live on the screen,
you can use tee(1).

$ /usr/sbin/sshd -ddd 2>&1 | tee /tmp/foo

That will save output to the file foo by capturing what sshd(8) (http://man.openbsd.org/sshd.8) sent to
stderr. This works with older versions of OpenSSH, but the -E option above is preferable.

If the server is remote and it is important to reduce the risk of getting locked out, the experiments on the
configuration file can be done with a second instance of sshd(8) (http://man.openbsd.org/sshd.8) using a
separate configuration file and listening to a high port until the settings have been tested.

$ /usr/sbin/sshd -dd -p 22222 -f /home/fred/sshd_co nfig.test

It is possible to make an extended test (-T) of the configuration file. If there is a syntax error, it will be
reported, but remember that even sound configurations could still lock you out. The extended test mode can
be used by itself, but it is also possible to specify particular connection parameters to use with -C. sshd(8)
(http://man.openbsd.org/sshd.8) will then process the configuration file in light of the parameters passed to it
and output the results. Of particular use, the results of Match directives will be shown.

When passing specific connection parameters to sshd(8) (http://man.openbsd.org/sshd.8) for evaluation,
user, host, and addr are the minimum required for extended testing. The following will print out the
configurations that will be applied if the user fred tries to log in to the host server.example.org from the
address 192.0.2.15:

$ /usr/sbin/sshd -TC user=fred,host=server.example. org,addr=192.0.2.15

Two more parameters, laddr and lport, may also be passed. They refer to the server IP number and port
connected to.

$ /usr/sbin/sshd -TC user=fred,host=server.example. org,addr=192.0.2.15,laddr=192.0.2.2,lport=2222

Sometimes when debugging a server configuration it is necessary to track the client, too. With sftp(1)
(http://man.openbsd.org/sftp.1) the options are also passed to ssh(1) (http://man.openbsd.org/ssh.1).

Debugging a client configuration

Since OpenSSH 6.8, the -G option makes ssh(1) (http://man.openbsd.org/ssh.1) print its configuration after
evaluating Host and Match blocks and then exit. That allows viewing of the exact configuration options that
will actually be used by the client for a particular connection.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

43 sur 82 19/06/2016 16:33

$ ssh -G -l fred server.example.org

Client configuration is determined by run-time options, the user's own configuration file, or the system-wide
client configuration file, in that order, whichever value is first.

Invalid or Outdated Ciphers or MACs

A proper client will show the details of the failure. For a bad Message Authentication Code (MAC), a proper
client might show something like the following when trying to foist a bad MAC like hmac-md5-96 onto the
server:

no matching mac found: client hmac-md5-96 server um ac-64-etm@openssh.com,umac-128-etm@openssh.com,hmac -
sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh. com,hmac-sha1-etm@openssh.com,umac-
64@openssh.com,umac-128@openssh.com,hmac-sha2-256,h mac-sha2-512,hmac-sha1

And for a bad cipher, a proper client might show something like this when trying to foist an arcfour cipher
on the server:

no matching cipher found: client arcfour server cha cha20-poly1305@openssh.com,aes128-ctr,aes192-
ctr,aes256-ctr,aes128-gcm@openssh.com,aes256-gcm@op enssh.com

Sometimes when troubleshooting a problem with the client it is necessary to turn to the server logs. In
OpenSSH 6.7 unsafe MACs were removed (http://www.openssh.com/txt/release-6.7) and in OpenSSH 7.2
unsafe ciphers were removed (http://www.openssh.com/txt/release-7.2), but some third-party clients may
still try to use them to establish a connection. In that case, the client might not provide much information
beyond a vague message that the server unexpectedly closed the network connection. The server logs will,
however, show what happened:

fatal: no matching mac found: client hmac-sha1,hmac -sha1-96,hmac-md5 server hmac-sha2-512-
etm@openssh.com,hmac-sha2-256-etm@openssh.com,umac- 128-etm@openssh.com,hmac-sha2-512,hmac-sha2-256,hma c-
ripemd160 [preauth]

Or more recent versions would show a simpler error for a bad MAC.

fatal: Unable to negotiate with 192.0.2.37 port 550 44: no matching MAC found. Their offer: hmac-md5-96
[preauth]

or for a bad cipher.

fatal: Unable to negotiate with 192.0.2.37 port 550 46: no matching cipher found. Their offer: arcfour
[preauth]

The error message in the server log might not say which MACs or ciphers are actually available. For that,
the extended test mode can be used to show the server settings, in particular the MACs or ciphers allowed.
In its most basic usage the extended test mode would just be -T, as in /usr/sbin/sshd -T | egrep

'cipher|macs' with no other options. For more details and options, see the previous section on "Debugging
a server configuration" above.

One solution there is to upgrade the client to one that can handle the right ciphers and MACs. Another
option is to switch to a different client, one that can handle the modern ciphers or MACs.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

44 sur 82 19/06/2016 16:33

Development
It is possible to advance OpenSSH through donations of hardware or money. See the OpenSSH project web
site at www.openssh.org (http://www.openssh.org) for details.

OpenSSH is a volunteer project with the goal of making quality software. In that way it relies upon hardware
and cash donations to keep the project rolling. Funds are needed for daily operation to cover network line
subscriptions and electrical costs. If 2 dollars were given for every download of the OpenSSH source code in
2015 from the master site, ignoring the mirrors, or if a penny was donated for every pf or OpenSSH installed
with a mainstream operating system or phone in 2015[1], then funding goals for the year would be met.
Hardware is needed for development and porting to new architectures and platforms always requires new
hardware.

OpenSSH is currently developed by two teams. The first team works providing code that is as clean, simple
and secure as possible as part of the OpenBSD project. The second team works using this core version and
ports it to a great many other operating systems. Thus there are two development tracks, the OpenBSD core
and the portable version. The work is all done in countries that permit export of cryptography.

Contents

1 Overview
1.1 History of OpenSSH

1.1.1 The Early Days of Remote Access
1.1.2 SSH - open then closed
1.1.3 OpenSSH

1.2 Why Use OpenSSH?
1.2.1 What OpenSSH Does
1.2.2 What OpenSSH Doesn't Do

2 Why Use Encryption
2.1 Excerpt of ssh-1.0.0 README from July 12, 1995
2.2 Phil Zimmermann on encryption and privacy, from 1991, updated 1999
2.3 Original Press Release for OpenSSH
2.4 The European Union (EU) on Encryption

3 SSH Protocols
3.1 SSH File Transfer Protocol (SFTP)

3.1.1 SFTP is not FTPS
3.1.2 Background of FTP
3.1.3 On FTPS

3.2 Privilege Separation
4 Other SSH Implementations

4.1 Dropbear
4.2 Tectia
4.3 Solaris Secure Shell (SunSSH)
4.4 GlobalSCAPE EFT Server

5 Client Applications
5.1 The SSH client

5.1.1 ssh client environment variables
5.1.2 SSH client configuration options

5.2 The SFTP client

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

45 sur 82 19/06/2016 16:33

5.3 The SCP client
5.4 GUI Clients

6 Client Configuration Files
6.1 System-wide Client Configuration Files

6.1.1 /etc/ssh/ssh_config
6.1.2 /etc/ssh/ssh_known_hosts
6.1.3 /etc/ssh/sshrc

6.2 User-specific Client Configuration Files
6.2.1 Client Side Files

6.2.1.1 ~/.ssh/config
6.2.1.1.1 Local override of defaults

6.2.1.2 ~/.ssh/known_hosts
6.2.2 Server Side Files

6.2.2.1 ~/.ssh/authorized_keys
6.2.2.2 ~/.ssh/authorized_principals
6.2.2.3 ~/.ssh/environment
6.2.2.4 ~/.ssh/rc

6.2.3 Legacy Files
6.2.3.1 ~/.shosts
6.2.3.2 ~/.rhosts

6.3 Available key login options
6.3.1 cert-authority
6.3.2 command="program"
6.3.3 environment="NAME=value"
6.3.4 from="pattern-list"
6.3.5 no-agent-forwarding
6.3.6 no-port-forwarding
6.3.7 no-pty
6.3.8 no-user-rc
6.3.9 no-X11-forwarding
6.3.10 permitopen="host:port"
6.3.11 principals="name1[,name2,...]"
6.3.12 tunnel="n"

6.4 User-specific Keys
6.4.1 Public Keys from other Hosts – ~/.ssh/known_hosts

6.5 Manually Adding Public Keys to ~/.ssh/known_hosts
6.5.1 Local User's Public / Private Key Pairs

6.5.1.1 Public Keys – ~/.ssh/id_dsa.pub ~/.ssh/id_ecdsa.pub ~/.ssh
/id_ed25519.pub ~/.ssh/id_rsa.pub

6.5.1.2 Private Keys – ~/.ssh/id_dsa ~/.ssh/id_ecdsa ~/.ssh/id_ed25519 ~/.ssh
/id_rsa

6.5.1.3 Legacy Protocol Keys ~/.ssh/identity ~/.ssh/identity.pub
6.6 User-specific Public Key Authentication
6.7 Managing Keys

7 Pattern Matching in OpenSSH Configuration
8 Utilities

8.1 ssh-agent
8.2 ssh-add
8.3 ssh-keyscan
8.4 ssh-keygen

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

46 sur 82 19/06/2016 16:33

8.5 ssh-vulnkey
8.6 ssh-copy-id

9 Logging and Troubleshooting
9.1 Server Logs

9.1.1 Successful logins
9.1.2 Logging SFTP File Transfers
9.1.3 Logging Chrooted SFTP
9.1.4 Logging Revoked Keys
9.1.5 Brute force and Hail Mary attacks

9.2 Client Logging
9.3 Debugging and Troubleshooting

9.3.1 Debugging a script, configuration or key that uses sudo
9.3.2 Debugging a server configuration
9.3.3 Debugging a client configuration

9.3.3.1 Invalid or Outdated Ciphers or MACs
10 Development

10.1 Use the Source, Luke
10.2 libssh
10.3 libssh2
10.4 Other language bindings for the SSH protocols

10.4.1 Perl
10.4.2 Python
10.4.3 Ruby
10.4.4 Java

11 Cookbook/Tunnels
11.1 Tunneling

11.1.1 Tunneling via an intermediate host
11.2 Reverse Tunneling
11.3 Adding or Removing Tunnels within an Established Connection

11.3.1 Adding or Removing Tunnels within a Multiplexed Connection
12 Cookbook/Automated Backup

12.1 Backup with rsync
12.1.1 Rsync with keys
12.1.2 Backup with rsync and sudo

12.2 Backup using tar
12.2.1 Backup of files without making a tarball

12.3 Backup using dump
13 Cookbook/File Transfer with SFTP

13.1 Basic SFTP
13.1.1 Automated SFTP

13.2 SFTP-only Accounts
13.2.1 Chrooted SFTP-only Accounts
13.2.2 Umask
13.2.3 Chrooted SFTP to Shared Directories
13.2.4 Chrooted SFTP Accounts Accessible Only from Particular Addresses
13.2.5 Chrooted SFTP with Logging
13.2.6 Chrooted login shells

13.3 sshfs - SFTP file transfer via local folders
13.3.1 sshfs with a key

14 Cookbook/Public Key Authentication

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

47 sur 82 19/06/2016 16:33

14.1 Verify a Host Key by Fingerprint
14.1.1 Downloading keys
14.1.2 ASCII Art Visual Host Key

14.2 Key-based authentication
14.2.1 Basics of Public Key Authentication

14.2.1.1 Associating Keys Permanently with a Server
14.2.1.2 Encrypted Home Directories
14.2.1.3 Passwordless login
14.2.1.4 Requiring Both Keys and a Password
14.2.1.5 Requiring Two or More Keys
14.2.1.6 Requiring Certain Key Types

14.2.2 Key-based authentication using an Agent
14.2.2.1 Agent forwarding

14.3 Single-purpose keys
14.3.1 Key-based authentication, with limitations on activity
14.3.2 Read-only access to keys

14.4 Mark public keys as revoked
14.4.1 Key Revocation Lists

14.5 More on Verifying SSH Keys
14.5.1 Warning: Remote Host Identification Has Changed!
14.5.2 Multiple keys for a host, multiple hosts for a key in known_hosts
14.5.3 Another way of Dealing with Dynamic (roaming) IP Addresses
14.5.4 Hostkey Update and Rotation in known_hosts

15 Cookbook/Proxies and Jump Hosts
15.1 SOCKS Proxy

15.1.1 Tunneling SSH Over Tor with Netcat
15.2 Jump Hosts -- Passing through a gateway or two

15.2.1 Port Forwarding via an Intermediate Host
15.2.2 SOCKS proxy via an Intermediate Host
15.2.3 ProxyCommand with Netcat
15.2.4 Passing through a gateway using netcat mode
15.2.5 Recursively chaining gateways

15.2.5.1 Recursively chaining an arbitrary number of hosts
15.3 Passing through a gateway with an ad hoc VPN

Use the Source, Luke

The main development branch of OpenSSH is part of the OpenBSD project. So the "-current" branch of
OpenBSD, available as source code, is where to look for current activity.

The source code for the portable releases of OpenSSH are published using anonymous CVS, so no password
is needed to download source from the read-only repository. It is provided and maintained by Damien Miller.
Nightly, bleeding-edge snapshots of OpenSSH itself are publicly available from its own CVS tree. Use a
mirror when possible.

export CVSROOT=anoncvs@anoncvs.mindrot.org:/cvs
export CVS_RSH=/usr/bin/ssh
cvs get openssh

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

48 sur 82 19/06/2016 16:33

The fingerprint for the key used by the OpenSSH source code repository, as of this writing, is:

2048 SHA256:UNyCGjDDKB8hPDhrgMRAID6F53TyECEgnMmBN/4ZbuY anoncvs.mindrot.org (RSA)

We ask anyone wishing to report security bugs in OpenSSH to please use the contact address given in the
source and to practice responsible disclosure.

libssh

libssh is an independend project that provides a mulitplatform C library implementing the SSHv2 and SSHv1
protocol for client and server implementations. With libssh, developers can remotely execute programs,
transfer files and use a secure and transparent tunnel for your remote applications.

libssh is available under LGPL 2.1 license, on the web page https://www.libssh.org/

Features:

Key Exchange Methods: curve25519-sha256@libssh.org, ecdh-sha2-nistp256, diffie-hellman-
group1-sha1, diffie-hellman-group14-sha1
Hostkey Types: ecdsa-sha2-nistp256, ssh-dss, ssh-rsa
Ciphers: aes256-ctr, aes192-ctr, aes128-ctr, aes256-cbc, aes192-cbc, aes128-cbc, 3des-cbc,
des-cbc-ssh1, blowfish-cbc
Compression Schemes: zlib, zlib@openssh.com, none
MAC hashes: hmac-sha1, none
Authentication: none, password, public-key, hostbased, keyboard-interactive, gssapi-with-mic
Channels: shell, exec (incl. SCP wrapper), direct-tcpip, subsystem, auth-agent-req@openssh.com
Global Requests: tcpip-forward, forwarded-tcpip
Channel Requests: x11, pty, exit-status, signal, exit-signal, keepalive@openssh.com, auth-agent-
req@openssh.com
Subsystems: sftp(version 3), publickey(version 2), OpenSSH Extensions
SFTP: statvfs@openssh.com, fstatvfs@openssh.com
Thread-safe: Just don’t share sessions
Non-blocking: it can be used both blocking and non-blocking
Your sockets: the app hands over the socket, or uses libssh sockets
OpenSSL or gcrypt: builds with either

Additional Features:

Client and server support
SSHv2 and SSHv1 protocol support
Supports Linux, UNIX, BSD, Solaris, OS/2 and Windows
Full API documentation and a tutorial
Automated test cases with nightly tests
Event model based on poll(2), or a poll(2)-emulation.

libssh2

libssh2 is another independent project providing a lean C library implementing the SSH2 protocol for
embedding specific SSH capabilities into other tools. It has a stable, well-documented API for working on
the client side with the different SSH subsystems: Session, Userauth, Channel, SFTP, and Public Key. The
API can be set to either blocking or non-blocking. The code uses strict name spaces, is C89-compatible and

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

49 sur 82 19/06/2016 16:33

builds using regular GNU Autotools.

libssh2 is available under a modified BSD license. The functions are each documented in their own manual
pages. The project web site contains the documentation, source code and examples: http://www.libssh2.org/

There is a mailing list for libssh2 in addition to an IRC channel. The project is small, low-key and, as true to
the spirit of the Internet, a meritocracy. Hundreds of specific functions allow specific activities and
components to be cherry-picked and added to an application:

Shell and SFTP sessions
Port forwarding
Password, public-key, host-based keys, and keyboard-interactive authentication methods.
Key Exchange Methods diffie-hellman-group1-sha1, diffie-hellman-group14-sha1, diffie-hellman-
group-exchange-sha1
Host Key Types: ssh-rsa and ssh-dss
Ciphers: aes256-cbc (rijndael-cbc@lysator.liu.se), aes192-cbc, aes128-cbc, 3des-cbc, blowfish-cbc,
cast128-cbc, arcfour, or without a cipher.
Compression Scheme zlib or without compression
Message Authentication Code (MAC) algorithms for hashes: hmac-sha1, hmac-sha1-96, hmac-md5,
hmac-md5-96, hmac-ripemd160 (hmac-ripemd160@openssh.com), or none at all
Channels: Shell, Exec – including the SCP wrapper, direct TCP/IP, subsystem

Channel Requests: x11, pty
Subsystems: sftp version 3, public-key version 2
Thread-safe, blocking or non-blocking API
Your sockets: the app hands over the socket, calls select() etc.
Builds with either OpenSSL or gcrypt

See also the library libcurl which supports SFTP and SCP URLs.

Other language bindings for the SSH protocols

What follows is a list of additional independent resources by programming language:

Perl

Net::SSH2 (http://search.cpan.org/perldoc?Net::SSH2): a wrapper module for libssh2.
Net::SSH::Perl (http://search.cpan.org/perldoc?Net::SSH::Perl): a full SSH/SFTP implementation in
pure Perl. Unfortunately this module is not being maintained any more and has several open bugs.
Also, installing it can be a daunting task due to some of its dependencies.
Net::OpenSSH (http://search.cpan.org/perldoc?Net::OpenSSH): a wrapper for OpenSSH binaries and
other handy programs (scp, rsync, sshfs). It uses OpenSSH multiplexing feature in order to reuse
connections.
Net::OpenSSH::Parallel (http://search.cpan.org/perldoc?Net::OpenSSH::Parallel) a module build on
top of Net::OpenSSH that allows to transfer files and run programs on several machines in parallel
efficiently.
SSH::Batch (http://search.cpan.org/perldoc?SSH::Batch) another module build on top of
Net::OpenSSH that allows to run programs on several hosts in parallel.
Net::SSH::Expect (http://search.cpan.org/perldoc?Net::SSH::Expect): this module uses Expect
(http://search.cpan.org/search?query=expect) to drive interactive shell sessions run on top of SSH.
Net::SSH (http://search.cpan.org/perldoc?Net::SSH): a simple wrapper around any SSH client. It does
not support password authentication and is very slow as it establishes a new SSH connection for every

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

50 sur 82 19/06/2016 16:33

remote program invoked.
Net::SCP (http://search.cpan.org/perldoc?Net::SCP) and Net::SCP::Expect (http://search.cpan.org
/perldoc?Net::SCP::Expect): modules wrapping the scp program. Note that Net::SSH2,
Net::SSH::Perl and Net::OpenSSH already support file transfers via scp natively.
Net::SFTP::Foreign (http://search.cpan.org/perldoc?Net::SFTP::Foreign): a full SFTP client written in
Perl with lots of bells and whistles. By default is uses ssh to connect to the remote machines but it can
also run on top of Net::SSH2 and Net::OpenSSH.
GRID::Machine (http://search.cpan.org/perldoc?GRID::Machine), IPC::PerlSSH
(http://search.cpan.org/perldoc?IPC::PerlSSH) and SSH::RPC (http://search.cpan.org
/perldoc?SSH::RPC): these modules allow to distribute and run Perl code on remote machines through
SSH.

Python

Paramiko (http://www.lag.net/paramiko/)

http://www.lag.net/paramiko/

Fabric (http://docs.fabfile.org/)

http://docs.fabfile.org/

libssh2 (http://www.no-ack.org/2010/11/python-bindings-for-libssh2.html)

http://www.no-ack.org/2010/11/python-bindings-for-libssh2.html

Ruby

Net::SSH (https://github.com/net-ssh)

https://github.com/net-ssh

Capistrano (https://github.com/capistrano/capistrano)

https://github.com/capistrano/capistrano

Java

Jaramiko (http://www.lag.net/jaramiko/)

http://www.lag.net/jaramiko/

JSch (http://www.jcraft.com/jsch/) - a pure Java implementation of SSH2.

http://www.jcraft.com/jsch/

References

"The OpenBSD Foundation 2016 Fundraising Campaign". The OpenBSD Foundation. 2016.
http://www.openbsdfoundation.org/campaign2016.html. Retrieved 2016-03-07.

1.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

51 sur 82 19/06/2016 16:33

Cookbook/Tunnels

In tunneling, or port forwarding, a local port is connected to a port on a remote host or vice versa. So
connections to the port on one machine are really connections to a port on the other machine.

The ssh(1) (http://man.openbsd.org/ssh.1) options -f (go to background), -N (do not execute a remote
program) and -T (disable pseudo-tty allocation) can be useful for connections that are used only for creation
of tunnels.

Tunneling

In regular port forwarding, connections to a local port are forwarded to a port on a remote machine. This is a
way of securing an insecure protocol or of making a remote service appear as local. Here we forwarded
VNC in two steps. First make the tunnel:

$ ssh -L 5901:localhost:5901 -l fred desktop.exampl e.org

Then on the local machine, connections to the forwarded port will really be connecting to the remote
machine.

Multiple tunnels can be specified at the same time. The tunnels can be of any kind, not just regular
forwarding. See the next section below for reverse tunnels. For dynamic forwarding see the section Proxies
and Jump Hosts.

$ ssh -L 5901:localhost:5901 \
 -L 5432:localhost:5432 \
 -l fred desktop.example.org

If a connection is only used to create a tunnel, then it can be told not to execute any remote programs (-N),
making it a non-interactive session, and to drop to the background (-f).

$ ssh -fN -L 3128:localhost:3128 -l fred server.exa mple.org

Note that -N will work even if the authorized_keys forces a program using the command= option. So a
connection using -N will stay open instead of running a program and then exiting.

Tunneling via an intermediate host

Tunneling can go via one intermediate host to reach a second host, the latter does not need to be on a
publicly accessible network. However, the target port on the second remote machine does have to be
accessible on the same network as the first. Here, 192.168.0.101 and bastion.example.org must be on the
same network and, in addition, bastion.example.org has to be directly accessible to the client machine
running ssh(1). So, port 80 on 192.168.0.101 has to be available to the machine bastion.example.org.

$ ssh -fN -L 1880:192.168.0.101:80 -l fred bastion. example.org

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

52 sur 82 19/06/2016 16:33

Thus, to connect to port 80 on 192.168.2.101 via the host bastion.example.org, once the tunnel is made,
connect to port 1880 on localhost. This way works for one or two hosts. It is also possible to chain multiple
hosts, using a different method.

For more about passing through intermediate computers, see the Cookbook section on Proxies and Jump
Hosts.

Reverse Tunneling

A reverse tunnel goes the opposite direction of a regular tunnel. In a reverse tunnel, a port on the remote
host is forwarded to the local host. Once the connection is made, it works the same as a regular tunnel.
Connections to the destination port on the local host connect to the remote host's port.

On the machine that will become the remote machine, open a reverse tunnel.

$ ssh -fNT -R 2022:localhost:22 -l fred server.exam ple.org

Then on the local machine, connecting to the forwarded port as the local host, will open the connection to
the machine hosting the reverse tunnel.

$ ssh -p 2022 -l fred localhost

A common use-case for reverse tunneling is when you have to access a machine that is behind a firewall that
blocks incoming ssh but without changing the firewall settings, and you have direct access to a second
machine outside the firewall. It is easy to make a reverse tunnel from the machine behind the firewall to the
second machine. Then to conect to the first machine from outside, connect to the forwarded port on the
second machine. The second machine on the outside acts as a relay server to forward connections to the
machine on the inside.

Adding or Removing Tunnels within an Established Connection

It is possible to add or remove tunnels, reverse tunnels, and SOCKS proxies to or from an existing
connection using an escape sequence. The default escape character is the tilde (~) and the full range of
options is described in the manual page for ssh(1) (http://man.openbsd.org/ssh.1). Escape sequences only
work if they are the first characters entered on a line and if followed by a return. When adding or removing
a tunnel to or from an existing connection, ~C, the command line is used.

To add a tunnel in an active SSH session, use the escape sequence to open a command line in SSH and then
enter the parameters for the tunnel:

~C
L 2022:localhost:22

To remove a tunnel from an active SSH session is almost the same. Instead of -L, -R, or -D we have -KL,
-KR, and -KD plus the port number. Use the escape sequence to open a command line in SSH and then enter
the parameters for removing the tunnel.

~C
KL2022

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

53 sur 82 19/06/2016 16:33

Adding or Removing Tunnels within a Multiplexed Connection

There is an additional option for forwarding when multiplexing. More than one SSH connection can be
multiplexed over a single TCP connection. Control commands can be passed to the master process to add or
drop port forwarding to the master process.

First a master connection is made and a socket path assigned.

$ ssh -S '/home/fred/.ssh/%h:%p' -M server.example. org

Then using the socket path, it is possible to add port forwarding.

$ ssh -O forward -L 2022:localhost:22 -S '/home/fre d/.ssh/%h:%p' fred@server.example.org

Since OpenSSH 6.0 it is possible to cancel specific port forwarding using a control command.

$ ssh -S "/home/fred/.ssh/%h:%p" -O cancel -L 2022 :localhost:22 fred@server.example.org

For more about multiplexing, see the Cookbook section on Multiplexing.

Cookbook/Automated Backup

Using OpenSSH with keys can facilitate secure automated backups. It's a myth that remote root access must
be allowed. sudo(8) (http://linux.die.net/man/8/sudo) works just fine -- if properly configured. rsync(1)
(http://linux.die.net/man/1/rsync)[1], tar(1) (http://man.openbsd.org/tar.1), and dump(8)
(http://man.openbsd.org/dump.8) are the foundation for most backup methods. Remember, that until the
backup data has been tested and shown to restore reliably, it does not count as a backup copy.

Backup with rsync

rsync(1) (http://linux.die.net/man/1/rsync) now defaults to using SSH. But it still can be specified explicitly:

$ rsync --exclude '*~' -avv \
 -e "ssh" \
 fred@server.example.org:./archive \
 /Users/fred/archive/.

For some types of data, transfer can be speeded up greatly by using rsync(1) (http://linux.die.net/man/1
/rsync) with compression, -z.

Rsync with keys

rsync(1) (http://linux.die.net/man/1/rsync) can authenticate using SSH keys. If the key is added to an agent,
then the passphrase only needs to be entered once:

$ rsync --exclude '*~' -avv \

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

54 sur 82 19/06/2016 16:33

 -e "ssh -i ~/.ssh/key_rsa" \
 fred@server.example.org:./archive \
 /Users/fred/archive/.

Backup with rsync and sudo

rsync(1) (http://linux.die.net/man/1/rsync) is often used to back up locally or remotely. rsync(1)
(http://linux.die.net/man/1/rsync) is fast and flexible and copies incrementally so only the changes are
transferred, thus avoiding wasting time re-copying what is already at the destination. It does that through use
of its now famous algorithm. When working remotely, it needs a little help with the encryption and the usual
practice is to tunnel it over SSH.

Preparation: create an account to use for the backup, create a pair of keys to use only for backup, then make
sure you can log in to that account with ssh(1) (http://man.openbsd.org/ssh.1) with and without those keys.

$ ssh -t -i ~/.ssh/mybkupkey bkupacct@www.example.o rg

Step 1: Configure sudoers(5) (http://linux.die.net/man/5/sudoers) and test rsync(1) (http://linux.die.net
/man/1/rsync) with sudo(8) (http://linux.die.net/man/8/sudo) on the remote host. In this case data is staying
on the remote machine.

Step 2: Test rsync(1) (http://linux.die.net/man/1/rsync) with sudo(8) (http://linux.die.net/man/8/sudo) over
ssh(1) (http://man.openbsd.org/ssh.1).

$ ssh -l bkupacct www.example.org sudo rsync -av:/v ar/www/ /tmp/

It will be necessary to tune /etc/sudoers a little at this stage. More refinements may come later. Note that
there is an rsync(1) (http://linux.die.net/man/1/rsync) user and an ssh(1) (http://man.openbsd.org/ssh.1) user.
The data in this case gets copied from the remote machine to the local /tmp.

$ rsync -e "ssh -t -l bkupacct" --rsync-path='sudo rsync' \
-av bkupacct@www.example.org:/var/www/ /tmp/

Step 3: Use the key.

$ rsync -e "ssh -i ~/.ssh/key -t -l bkupacct" --rsy nc-path='sudo rsync' \
-av bkupacct@www.example.org:/var/www/ /tmp/

Step 4: Adjust /etc/sudoers so that the backup account has enough access to run rsync(1)
(http://linux.die.net/man/1/rsync) but only in the directories it is supposed to run in and without free-rein on
the system. Use the first debugging level to see the actual parameters getting passed to the remote host. That
provides the basis of what /etc/sudoers will need:

$ rsync -e "ssh -t -v" --rsync-path='sudo rsync' \
-av bkupacct@www.example.org:/var/www/ /tmp/
...
debug1: Sending command: sudo rsync --server --send er -e.iLs . /var/www
...

Be sure that the backed up data is not accessible to others. At this point you are done. However the process
can be automated much further.

Step 5: Test rsync(1) (http://linux.die.net/man/1/rsync) with sudo(8) (http://linux.die.net/man/8/sudo) over

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

55 sur 82 19/06/2016 16:33

ssh(1) (http://man.openbsd.org/ssh.1).

$ rsync -e "ssh -t" --rsync-path='sudo rsync' \
-av bkupacct@www.example.org:/var/www/ /tmp/

Ok. The account on the server is named 'bkupacct' and the private RSA key is ~/.ssh/key_bkup_rsa on the
client. On the server, the account 'bkupacct' is a member of the group 'autobackup'.

The public key, ~/.ssh/key_bkup_rsa.pub, has been copied to the account bkupacct on server and placed in
~/.ssh/authorized_keys there.

The following directories on server are owned by root and belong to the group bkupacct and not group
readable, but not group writeable, and definitely not world readable: ~ and ~/.ssh. Same for the file ~/.ssh
/authorized_keys there. (This assumes you are not also using ACLs) This is one way of many to set
permissions on the server:

$ sudo chown root:bkupacct ~
$ sudo chown root:bkupacct ~/.ssh/
$ sudo chown root:bkupacct ~/.ssh/authorized_keys
$ sudo chmod u=rwx,g=rx,o= ~
$ sudo chmod u=rwx,g=rx,o= ~/.ssh/
$ sudo chmod u=rwx,g=r,o= ~/.ssh/authorized_keys

Say you're backing up from server to client. rsync(1) (http://linux.die.net/man/1/rsync) on the client uses
ssh(1) (http://man.openbsd.org/ssh.1) to make the connection to rsync on the server. rsync(1)
(http://linux.die.net/man/1/rsync) is invoked from client like this to see exactly what parameters are being
passed to the server:

$ rsync \
 -e "ssh \
 -i ~/.ssh/key_bkup_rsa \
 -t \
 -l bkupacct" \
 --rsync-path='sudo rsync' \
 --delete \
 --archive \
 --compress \
 --verbose \
 bkupacct@server:/var/www \
 /media/backups/server/backup/

sudo(8) (http://linux.die.net/man/8/sudo) will need to be configured on the server. The argument
--rsync-path tells the server what to run in place of rsync(1) (http://linux.die.net/man/1/rsync). In this case
it runs sudo rsync . The argument -e says which remote shell tool to use. In this case it is ssh(1)
(http://www.openbsd.org/cgi-bin/man.cgi/OpenBSD-current/man1/ssh.1). For the SSH client being called by
the rsync(1) (http://linux.die.net/man/1/rsync) client, -i says which key, specifically, to use. That is
independent of whether or not an authentication agent is used for ssh keys. Having more than one key is a
possibility, since it is possible to have different keys for different tasks.

Keep making adjustments to /etc/sudoers on the server until it works as it should. You can find the exact
settings(s) to use in /etc/sudoers by running the SSH in verbose mode (-v) on the client. Be careful when
working with patterns not to match more than is safe.

%autobackup ALL=(ALL) NOPASSWD: /usr/local/bin/rsyn c --server \
--sender -vlogDtpre.if . /var/www/

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

56 sur 82 19/06/2016 16:33

Backup using tar

The main choice for creating archives is tar(1) (http://man.openbsd.org/tar.1). But since it copies whole files
and directories, rsync(1) (http://linux.die.net/man/1/rsync) is usually much more efficient for updates or
incremental backups.

The following will make a tarball of the directory /var/www and send it via stdout into sdtin via a pipe into
ssh(1) (http://man.openbsd.org/ssh.1) where, on the remote machine it is directed into the file called
backup.tar. Here tar(1) (http://man.openbsd.org/tar.1) runs on a local machine and stores the tarball
remotely:

$ tar cf - /var/www/ | ssh -l fred server.example.o rg "cat > backup.tar"

There are really limitless options for that recipe:

$ tar zcf - /var/www/ /home/*/www/ \
 | ssh -l fred server.example.org "cat > $(date +"%Y-%m-%d").tar.gz

That will do the same, but also get user www directories, compress the tarball using gzip, and label the
resulting file according to the current date.

$ tar zcf - /var/www/ /home/*/www/ \
 | ssh -i key -l fred server.example.org "c at > $(date +"%Y-%m-%d").tgz

It is just as easy to tar(1) (http://man.openbsd.org/tar.1) what is on a remote machine and store the tarball
locally.

$ ssh fred@server.example.org "tar zcf - /var/www/" > backup.tgz

Or a fancier example of running tar on the remote machine but storing the tarball locally.

$ ssh -i key -l fred server.example.org "tar jcf - /var/www/ /home/*/www/" \
 > $(date +"%Y-%m-%d").tar.bz2

The secret to the backup is the use of stdout and stdin to effect the transfer through judicious use of pipes
and redirects.

Backup of files without making a tarball

Sometimes it is necessary to just transfer the files and directories without making a tarball at the destination.
In addition to writing to stdin on the source machine, tar(1) (http://man.openbsd.org/tar.1) can read from
stdin on the destination machine to transfer whole directory hierarchies at once.

$ tar zcf - /var/www/ | ssh -l fred server.example. org "cd /some/path/; tar zxf -"

Or going the opposite direction, it would be the following.

$ ssh 'tar zcf - /var/www/' | (cd /some/path/; tar zxf -)

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

57 sur 82 19/06/2016 16:33

However, these still copy everything each time they are run. So rsync(1) (http://linux.die.net/man/1/rsync)
described above in the previous section might be a better choice in many situations, since on subsequent
runs it only copies the changes.

Backup using dump

Using dump(8) (http://man.openbsd.org/dump.8) remotely is like using tar(1) (http://man.openbsd.org/tar.1).
One can copy from the remote server to the local server.

$ ssh -t source.example.org 'sudo dump -0an -f - /v ar/www | gzip -c9' > backup.dump.gz

Note that the password prompt for sudo(8) (http://linux.die.net/man/8/sudo) might not be visible and it must
be typed blindly.

Or one can go the other direction, copying from the locate server to the remote:

$ sudo dump -0an -f - /var/www | gzip -c9 | ssh tar get.example.org 'cat > backup.dump.gz'

Note that here the password prompt might get hidden in the initial output from dump(8)
(http://man.openbsd.org/dump.8). It's still there.

References

"How Rsync Works". Samba. http://www.samba.org/rsync/how-rsync-works.html.1.

Cookbook/File Transfer with SFTP

The basic SFTP service requires no additional setup, it is a built-in part of the OpenSSH server. However, the
same options and tricks available for the regular SSH client are also available for SFTP clients. Some options
may have to be specified with the full option name using the -o argument.

For many graphical SFTP clients, it is possible to use a regular URL to point to the target. Many file
managers nowadays have built-in support for SFTP. See the section "GUI Clients" above.

The subsystem sftp-server(8) (http://man.openbsd.org/sftp-server.8) implements SFTP file transfer. See the
manual page for sftp-server(8) (http://man.openbsd.org/sftp-server.8). The subsystem internal-sftp
implements an in-process SFTP server which may simplify configurations using ChrootDirectory to force a
different filesystem root on clients.

Basic SFTP

Just to say it again, regular SFTP access requires no additional changes from the default configuration. SFTP
provides a very easy to use and very easy to configure option for accessing a remote system. The usual
clients can be used or special ones like sshfs(1) (http://linux.die.net/man/1/sshfs).

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

58 sur 82 19/06/2016 16:33

Automated SFTP

SFTP uploads or downloads can be automated. The prerequisite is key-based authentication. Once
key-based authentication is working, a batch file can be used to carry out activities via SFTP. See the
batchfile option -b in sftp(1) (http://man.openbsd.org/sftp.1) for details.

$ sftp -b /home/fred/cmds.batch -i /home/fred/.ssh/ foo_key_rsa server.example.org:/home/fred/logs/

If a dash (-) is used as the batchfile name, SFTP commands will be read from stdin.

$ echo "put /var/log/foobar.log" | sftp -b - -i /ho me/fred/.ssh/foo_key_rsa server.example.org:/home/f red/logs/

More than one SFTP command can be sent, but it is better then to use an actual batch file.

$ echo -e "put /var/log/foobar.log\nput /var/log/mu nged.log" | sftp -b - -i /home/fred/.ssh/foo_key_rs a server.example.or

The batch file mode can be very useful in cron jobs and in scripting.

SFTP-only Accounts

Using the Match directive in sshd_config(5) (http://man.openbsd.org/sshd_config.5), it is possible to limit
members of a specific group to using only SFTP for interaction with the server.

Subsystem sftp internal-sftp

Match Group sftp-only
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

Note that disabling TCP forwarding does not improve security unless users are also denied shell access, as
they can in principle install their own forwarders.

See PATTERNS in ssh_config(5) (http://man.openbsd.org/ssh_config.5) for more information on patterns
avaiable to Match.

Chrooted SFTP-only Accounts

It's common that a group of users need to read and write files to their home directories on the server, but
have little or no reason to access the rest of the file system. SFTP provides a very easy to use and very easy
to configure chroot. In some cases, it is enough to chroot users to their home directories. Depending on the
opensshd version this may not be usable since some versions require that the chroot-target directory and all
parent directories are owned by root and not writeable by any others. In most cases home directories aren't
owned by root and allow writing by at least one user. One way around this restriction is to have the home
directory owned by root, but have it populated with a number of other directories and files that are owned
by the actual user to which the user can write.

Subsystem sftp internal-sftp

Match Group sftp-only
 ChrootDirectory %h
 AllowTCPForwarding no
 X11Forwarding no

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

59 sur 82 19/06/2016 16:33

 ForceCommand internal-sftp

If it is not practical to have users' home directories owned by root, a compromise can be made.
ChrootDirectory can point to /home, which must be owned by root anyway, and then ForceCommand can
then designate the user's home directory as the starting directory using the -d option.

Subsystem sftp internal-sftp

Match Group sftp-only
 ChrootDirectory /home
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp -d %u

If it is necessary to hide the contents of the home directories from other users, chmod(1)
(http://man.openbsd.org/chmod.1) should be used. Permissions could be 0111 for /home and 0750 or 0700
for the home directories, be sure to check the group memberships as well.

Another common case is to chroot access to a web server's document root or server root.

Subsystem sftp internal-sftp

Match Group webmasters
 ChrootDirectory /var/www
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp

Umask

Starting with OpenSSH 5.4, sftp-server(8) (http://man.openbsd.org/sftp-server.8) can set a umask to override
the default one set by the user’s account. The in-process SFTP server, internal-sftp, accepts the same options
as the external SFTP subsystem.

Subsystem sftp internal-sftp -u 0022

Earlier versions can do the same thing through the use of a helper script, but this complicates chrooted
directories very much. The helper script can be a regular script or it can be embedded inline in the
configuration file though neither works easily in a chroot jail. It’s often easier to get a newer version of
sshd(8) (http://man.openbsd.org/sshd.8) which supports umask as part of the server’s configuration. Here is
an inline helper script for umask in OpenSSH 5.3 and earler, based on one by gilles@

Subsystem sftp /bin/sh -c 'umask 0022; /usr/libexec /openssh/sftp-server'

This umask is server-side only. The original file permissions on the client side will usually, but not always, be
used when calculating the final file permissions on the server. This depends on the client itself. Most clients
pass the file permissions on to the server, FileZilla being a notable exception. As such, permissions can
generally be tightened but not loosened. For example, a file that is mode 600 on the client will not be
automatically made 664 or anything else less than the original 600 regardless of the server-side umask. That
is unless the client does not forward the permissions, in which case only the server's umask will be used. So
for most clients, if you want looser permissions on the uploaded file, change them on the client before
uploading.

Chrooted SFTP to Shared Directories

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

60 sur 82 19/06/2016 16:33

Another common case is to chroot a group of users to different levels of the web server they are responsible
for. For obvious reasons, symbolic links going from inside the jail to parts of the filesystem outside the
chroot jail are not accessible to the chrooted users. So directory hierarchies must be planned more carefully
if there are special combinations of access.

Subsystem sftp internal-sftp

Match Group webdevel
 ChrootDirectory /var/www/site1
 ForceCommand internal-sftp

Match Group webauthors
 ChrootDirectory /var/www/site1/htdocs
 ForceCommand internal-sftp

In these kinds of directories, it may be useful to give different levels of access to more than just one group.
In that case, ACLs should be used.

Chrooted SFTP Accounts Accessible Only from Particular Addresses

More complex matching can be done. It is possible to allow a group of users to use SFTP, but not a shell
login, only if they log in from a specific address or range of addresses. If they log in from the right addresses,
then get SFTP and only SFTP, but if they try to log in from other addresses they will be denied access
completely. Both conditions, the affirmative and negative matches, need to be accounted for.

Subsystem sftp internal-sftp

Match Group sftp-only, Address 192.0.43.10
 AllowTCPForwarding no
 X11Forwarding no
 ForceCommand internal-sftp
 ChrootDirectory /home/servers/

Match Group sftp-only, Address *,!192.0.43.10
 DenyGroups sftp-only

Note that for negation a wildcard must be specified first and then the address or range to be excluded
following it. Mind the spaces or lack thereof. Similar matching can be done for a range of addresses by
specifying the addresses in CIDR address/mask format, such as 192.0.32.0/20. Any number of criteria can
be specified and only if all of them are met then the directive in the subsequent lines take effect.

Again, the first Match block that fits is the one that takes effect, so care must be taken when constructing
conditional blocks to make them fit the precise situation desired. Also, any situations that don't fit a Match
conditional block will fall through the cracks. Those will get the general configuration settings whatever they
may be. Specific user and source address combinations can be tested with the configurations using the -T
and -C options with the server for more options. See the section Debugging a Server Configuration for more.

Chrooted SFTP with Logging

The logging daemon must establish a socket in the chroot directory for the sftp-server(8)
(http://man.openbsd.org/sftp-server.8) subsystem to access as /dev/log See the section on Logging.

Chrooted login shells

The chroot and all its components, must be root-owned directories that are not writable by any other user or
group. The ChrootDirectory must contain the necessary files and directories to support the user's session.
For an interactive session this requires at least a shell, typically bash(1) (http://linux.die.net/man/1/bash),

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

61 sur 82 19/06/2016 16:33

ksh(1) (http://man.openbsd.org/ksh.1), or sh(1) (http://man.openbsd.org/sh.1), and basic /dev nodes such as
null(4) (http://man.openbsd.org/null.4), zero(4) (http://man.openbsd.org/zero.4), stdin(4)
(http://man.openbsd.org/stdin.4), stdout(4) (http://man.openbsd.org/stdout.4), stderr(4)
(http://man.openbsd.org/stderr.4), arandom(4) (http://man.openbsd.org/arandom.4), and tty(4)
(http://man.openbsd.org/tty.4) devices. The path may contain the following tokens that are expanded at
runtime once the connecting user has been authenticated: %% is replaced by a literal '%' , %h is replaced
by the home directory of the user being authenticated, and %u is replaced by the username of that user.

sshfs - SFTP file transfer via local folders

Another way to transfer files back and forth, or even use them remotely, is to use sshfs(1)
(http://linux.die.net/man/1/sshfs) It is a file system client based on SFTP and utilizes the sftp-subsystem. It
can make a directory on the remote server accessible as a directory on the local file system which can be
accessed by any program just as if it were a local directory. The user must have read-write privileges for
mount point to use sshfs(1) (http://linux.die.net/man/1/sshfs).

The following creates the mount point, mountpoint, in the home directory if none exists. Then sshfs(1)
(http://linux.die.net/man/1/sshfs) mounts the remote server.

$ test -e ~/mountpoint || mkdir --mode 700 ~/mountp oint
$ sshfs fred@server.example.org:. ~/mountpoint

Reading or writing files to the mount point is actually transferring data to or from the remote system. The
amount of bandwidth consumed by the transfers can be reduced using compression. That can be important if
the network connection has bandwidth caps or per-unit fees. However, if speed is the only issue,
compression can make the transfer slower if the processors on either end are busy or not powerful enough.
About the only way to be sure is to test and see which method is faster. Below, compression is specified with
-C.

$ sshfs -C fred@server.example.org:. ~/mountpoint

Or try with debugging output:

$ sshfs -o sshfs_debug fred@server.example.org:. /h ome/fred/mountpoint

Named pipes will not work over sshfs(1) (http://linux.die.net/man/1/sshfs).

sshfs with a key

The ssh_command option is used to pass parameters on to ssh(1) (http://man.openbsd.org/ssh.1). In this
example it is used to have ssh(1) (http://man.openbsd.org/ssh.1) point to a key used for authentication to
mount a remote directory, /usr/src, locally as /home/fred/src.

$ sshfs -o ssh_command="ssh -i /home/fred/.ssh/id_r sa" fred@server.example.org:/usr/src /home/fred/src /

If a usable key is already loaded into the agent, then ssh(1) (http://man.openbsd.org/ssh.1) should find it and
use it on behalf of sshfs(1) (http://linux.die.net/man/1/sshfs) without needing intervention.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

62 sur 82 19/06/2016 16:33

Cookbook/Public Key Authentication

Authentication keys can improve efficiency, if done properly. As a bonus advantage, the passphrase and
private key never leave the client[1]. They are generally recommended for outward facing systems so
password authentication can be turned off.

Verify a Host Key by Fingerprint

The first time connecting to a remote host, the key itself should be verified. Usually this is done by
comparing the fingerprint or the ASCII art visual host key, metadata about the key, rather than trying to
compare the whole key itself.

$ ssh -l fred server.example.org
The authenticity of host 'server.example.org (192.0 .32.10)' can't be established.
ECDSA key fingerprint is SHA256:LPFiMYrrCYQVsVUPzjO Hv+ZjyxCHlVYJMBVFerVCP7k.
Are you sure you want to continue connecting (yes/n o)?

The fingerprint can be forced to display as an MD5 hash in hexadecimal instead by passing
FingerprintHash configuration directive as a runtime argument or in ssh_config. But the default is now
SHA256 in base64.

$ ssh -o FingerprintHash=md5 host.example.org
The authenticity of host 'host.example.org (192.0.3 2.203)' can't be established.
RSA key fingerprint is MD5:10:4a:ec:d2:f1:38:f7:ea: 0a:a0:0f:17:57:ea:a6:16.
Are you sure you want to continue connecting (yes/n o)?

In OpenSSH 6.7 and earlier this fingerprint was a hexadecimal MD5 checksum instead a of the base64-
encoded SHA256 checksum currently used:

$ ssh -l fred server.example.org
The authenticity of host 'server.example.org (192.0 .32.10)' can't be established.
RSA key fingerprint is 4a:11:ef:d3:f2:48:f8:ea:1a:a 2:0d:17:57:ea:a6:16.
Are you sure you want to continue connecting (yes/n o)?

Downloading keys

Usually a host’s key is displayed the first time the SSH client tries to connect. The remote host’s public keys
can also be fetched on demand using ssh-keyscan(1) (http://man.openbsd.org/ssh-keyscan.1):

$ ssh-keyscan host.example.org
host.example.org SSH-2.0-OpenSSH_7.2
host.example.org ecdsa-sha2-nistp256 AAAAE2VjZHNhLX NoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBLC2PpBnFrbXh 2YoK030Y5JdglqCWfoz
host.example.org SSH-2.0-OpenSSH_7.2
host.example.org ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAA ABAQC9iViojCZkcpdLju7/3+OaxKs/11TAU4SuvIPTvVYvQO32o 4KOdw54fQmd8f4qUWU5
host.example.org SSH-2.0-OpenSSH_7.2
host.example.org ssh-ed25519 AAAAC3NzaC1lZDI1NTE5AA AAIDDOmBOknpyJ61Qnaeq2s+pHOH6rdMn09iREz2A/yO2m

Once the key is acquired, its fingerprint can be shown using ssh-keygen(1) (http://man.openbsd.org
/ssh-keygen.1). This can be done directly with a pipe.

$ ssh-keyscan host.example.org | ssh-keygen -lf -

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

63 sur 82 19/06/2016 16:33

host.example.org SSH-2.0-OpenSSH_7.2
host.example.org SSH-2.0-OpenSSH_7.2
host.example.org SSH-2.0-OpenSSH_7.2
256 SHA256:sxh5i6KjXZd8c34mVTBfWk6/q5cC6BzR6Qxep5nB MVo host.example.org (ECDSA)
2048 SHA256:hlPei3IXhkZmo+GBLamiiIaWbeGZMqeTXg15R42 yCC0 host.example.org (RSA)
256 SHA256:ZmS+IoHh31CmQZ4NJjv3z58Pfa0zMaOgxu8yAcpu wuw host.example.org (ED25519)

If there is more than one public key type is available from the server on the port polled, then ssh-keyscan(1)
(http://man.openbsd.org/ssh-keyscan.1) will fetch them. If there is more than one key fed via stdin or a file,
then ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1) will process them. Prior to OpenSSH 7.2 manual
fingerprinting was a two step process, the key was read to a file and then processed for its fingerprint.

$ ssh-keyscan -t ed25519 host.example.org > key.pub
host.example.org SSH-2.0-OpenSSH_6.8
$ ssh-keygen -lf key.pub
256 SHA256:ZmS+IoHh31CmQZ4NJjv3z58Pfa0zMaOgxu8yAcpu wuw host.example.org (ED25519)

Note that some output from ssh-keyscan(1) (http://man.openbsd.org/ssh-keyscan.1) is sent to stderr instead
of stdout.

The hash can be generated manually with awk(1) (http://linux.die.net/man/1/awk), sed(1)
(http://linux.die.net/man/1/sed) and xxd(1) (http://linux.die.net/man/1/xxd), on systems where they are
found.

$ awk '{print $2}' key.pub | base64 -d | md5sum -b | sed 's/../&:/g; s/: .*$//'
$ awk '{print $2}' key.pub | base64 -d | sha256sum -b | sed 's/ .*$//' | xxd -r -p | base64

It is possible to find all hosts from a file which have new or different keys from those in known_hosts, if the
host names are in clear text and not stored as hashes.

$ ssh-keyscan -t rsa,dsa -f ssh_hosts | \
 sort -u - ~/.ssh/known_hosts | \
 diff ~/.ssh/known_hosts -

ASCII Art Visual Host Key

An ASCII art representation of the key can be supplied along with the SHA256 base64 fingerprint:

$ ssh-keygen -lvf key
256 SHA256:BClQBFAGuz55+tgHM1aazI8FUo8eJiwmMcqg2U3U gWU www.example.org (ED25519)
+--[ED25519 256]--+
|o+=*++Eo |
|+o .+.o. |
|B=.oo. . |
|*B.=.o . |
|= B * S |
|. .@ . |
| +..B |
| *. o |
| o.o. |
+----[SHA256]-----+

In OpenSSH 6.7 and earlier the fingerprint is in MD5 hexadecimal form.

$ ssh-keygen -lvf key
2048 37:af:05:99:e7:fb:86:6c:98:ee:14:a6:30:06:bc:f 0 www.example.net (RSA)
+--[RSA 2048]----+
| o |
| o . |

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

64 sur 82 19/06/2016 16:33

| o o |
| o + |
| . . S |
| E .. |
| .o.* .. |
| .*=.+o |
| ..==+. |
+-----------------+

Key-based authentication

OpenSSH can use public key cryptography for authentication. In public key cryptography, encryption and
decryption are asymmetric. The keys are used in pairs, a public key to encrypt and a hidden key to decrypt.
ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1) can make RSA, DSA, Ed25519, or ECDSA keys for
authenticating. DSA keys must be exactly 1024 bits in size. RSA keys are allowed to vary from 768 bits on
up. Ed25519 keys have a fixed length. ECDSA can be one of 256, 384 or 521 bits. Shorter keys are faster,
but less secure. Longer keys are much slower to work with but provide better protection.

The key files can be named anything, so it is possible to have many keys each for different services or tasks.
The comment field at the end of the public key can be useful in helping to keep the keys sorted, if you have
many of them or use them infrequently.

With key-based authentication, a copy of the public key is stored on the server and the private key is kept
on the client. When the client first contacts the server, the server responds by using the client's public key to
encrypt a random number and return that encrypted random number as a challenge to the client. The client
uses the matching private key to decrypt the challenge and extract the random number. The client then
makes an MD5 hash of the session ID and the random number from the challenge and returns that hash to
the server. The server then makes its own hash of the session ID and the random number and compares that
to the hash returned by the client. If there is a match, the login is allowed. If there is not a match, then the
next public key on the server is tried until either a match is found or all the keys have been tried. [2]

If an agent is used on the client side to manage authentication, the process is similar. It only differs in that
ssh(1) (http://man.openbsd.org/ssh.1) passes the challenge off to the agent which then calculates the
response and passes it back to ssh(1) (http://man.openbsd.org/ssh.1) which then passes the agent's response
back to the server.

Basics of Public Key Authentication

For public key authentication, a key pair is needed. ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1) is
used to make the key pair. From that pair the public key must be properly stored on the remote host and the
private key stored safely on the client. The public key is added to the designated authorized_keys file for
the remote user account. Once the keys have been prepared they can be used again and again without
needing to do anything else.

Preparation of the keys:

0) If either the authorized_keys file or .ssh directory do not exist on either the client machine or the remote
machine, create them and set the permissions correctly:

$ mkdir ~/.ssh/
$ touch ~/.ssh/authorized_keys
$ chmod 0700 ~/.ssh/
$ chmod 0600 ~/.ssh/authorized_keys

1) Create a key pair. The example here creates a 4096-bit RSA key pair in the directory ~/.ssh. The option

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

65 sur 82 19/06/2016 16:33

-b determines the key size, the option -t assigns the key type, and the option -f assigns the key file a name. It
is good to give keys descriptive file names, especially if larger numbers are managed. As a result of the line
below, the public key will be seen named mykey_rsa.pub and and the private key will be called mykey_rsa.
Be sure to enter a sound passphrase.

$ ssh-keygen -b 4096 -t rsa -f ~/.ssh/mykey_rsa

Since 6.5 a new private key format is available using a bcrypt KDF to better protect keys at rest. This new
format is always used for Ed25519 keys, and sometime in the future will be the default for all keys. But for
right now it may be requested when generating or saving existing keys of other types via the -o option in
ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1).

$ ssh-keygen -o -b 4096 -t rsa -f ~/.ssh/mykey_rsa

Details of the new format are found in the source code in the file PROTOCOL.key.

2) Transfer both the public and private keys to the client machine, if not already there from the step above.
It is usually best to store both the public and private keys in the directory ~/.ssh/ together.

3) Transfer only the public key to remote machine.

$ scp ~/.ssh/mykey_rsa.pub fred@remotehost.example. org:.

4) Log in to the remote machine and add the new public key to the authorized_keys file, whether in ~/.ssh
/authorized_keys, the default, or somewhere else as designated by the server's configuration.

$ cat mykey_rsa.pub >> ~/.ssh/authorized_keys
$ nano -w ~/.ssh/authorized_keys

Any editor that does not wrap long lines can be used. In the example above, nano(1) (http://linux.die.net
/man/1/nano) is started with the -w option to prevent wrapping of long lines. The same can also be
accomplished permanently by editing nanorc(5) (http://linux.die.net/man/5/nanorc) However it is done, the
key must be in the file whole and unbroken, on a single line.

Usage of the keys: Authenticate to the remote machine from the client using the private key. The option -i
tells ssh(1) (http://man.openbsd.org/ssh.1) which private key to try.

$ ssh -i ~/.ssh/mykey_rsa -l fred remotehost.exampl e.org

➥ Troubleshooting of key-based authentication:

If the server refuses to accept the key and fails over to the next authentication method (eg: "Server refused
our key"), then there are several possible mistakes to look for on the server side.

A common error, if a key doesn't work, is that the file permissions are wrong. The authorized key file must
be owned by the user in question and not be group writable. Nor may the key file's directory be group or
world writable.

$ chmod u=rwx,g=rx,o= ~/.ssh
$ chmod u=rw,g=,o= ~/.ssh/authorized_keys

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

66 sur 82 19/06/2016 16:33

Another mistake that can happen is if the key is broken by line breaks or has other white space in the
middle. That can be fixed by joining up the lines and removing the spaces or by recopying the key more
carefully.

And, though it should go without saying, the halves of the key pair need to match. The public key on the
server needs to match the private key held on the client. If the public key is lost, then a new one can be
generated with the -y option, but not the other way around. If the private key is lost, then the public key
should be erased as it is no longer of any use. If many keys are in use for an account, it might be a good idea
to add comments to them. On the client, it can be a good idea to know which server the key is for, either
through the file name itself or through the comment field. A comment can be added using the -C option.

$ ssh-keygen -b 4096 -t rsa -f ~/.ssh/mykey_rsa -C "web server mirror"

On the server, it can be important to annotate which client they key is from if there is more than one public
key there in an account. There the comment can be added to the authorized key file on the server in the last
column if a comment does not already exist. Again, the format of the authorized keys file is given in the
manual page for sshd(8) (http://man.openbsd.org/sshd.8) in the section "AUTHORIZED_KEYS FILE
FORMAT". If the keys are not labeled they can be hard to match, which might or might not be what you
want.

Associating Keys Permanently with a Server

The Host directive in ssh_config(5) (http://man.openbsd.org/ssh_config.5) can apply specific settings to a
target host. That includes using specific keys with certain hosts. So by changing ~/.ssh/config it is possible to
assign keys to be tried automatically whenever making a connection to that host. Here, all that's needed is to
type ssh web1 to connect with the key for that server.

Host web1
 Hostname 198.51.100.32
 IdentitiesOnly=yes
 IdentityFile=/home/fred/.ssh/web_key_rsa

Below ~/.ssh/config uses different keys for server versus server.example.org, regardless whether they
resolve to the same machine. This is possible because the host name argument given to ssh(1)
(http://man.openbsd.org/ssh.1) is not converted to a canonicalized host name before matching.

Host server
 IdentityFile /home/fred/.ssh/key_a_rsa

Host server.example.org
 IdentityFile /home/fred/.ssh/key_b_rsa

The parser is first-match, so the shorter name is tried first. Of course less ambiguous shortcuts can also be
made.

Encrypted Home Directories

With encrypted home directories, the keys must be stored in an unencrypted directory and sshd(8)
(http://man.openbsd.org/sshd.8) configured appropriately to find the keys in that special location. Sometimes
it is also necessary to add a script or call a program from /etc/ssh/sshrc to decrypt the directory after
authentication.

One symptom of having an encrypted home directory is that key-based authentication only works when you

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

67 sur 82 19/06/2016 16:33

are already logged into the same account, but fails when trying to make the first connection and log in for
the first time.

Here is one method for solving the access problem. Each user is given a subdirectory under /etc/ssh/keys/
which they can then use for storing their authorized_keys file. This is set in the server's configuration file
/etc/ssh/sshd_config

AuthorizedKeysFile /etc/ssh/keys/%u/authorized _keys

Multiple key file locations can be specified if they are separated by whitespace. The user needs read access
to the directory and keys, but write access is not needed. That opens up more possibilities as to how the keys
can be managed.

Passwordless login

One way of allowing passwordless logins is to follow the steps above, but do not enter a passphrase. Note
that this is very risky, so the key files should be very well protected and kept track of. That includes that
they only be used as single-purpose keys as described below. Timely key rotation becomes especially
important. In general, it is not a good idea to make a key without a passphrase. A better solution is to work
with an authentication agent in conjunction with a single-purpose key.

Requiring Both Keys and a Password

While users should have strong passphrases for their keys, there is no way to enforce or verify that. Indeed,
the passphrase for any given key never leaves the client machine so it is nothing that the server can have any
influence over. Starting with OpenSSH 6.2, it is possible for the server to require multiple authentication
methods for login using the AuthenticationMethods directive.

AuthenticationMethods publickey,password

This example requires that users first authenticate using a key and only queries for a password if that
succeeds. It is not possible to get to the system password prompt without first authenticating with a valid
key. Changing the order of the arguments changes the order of the authentication methods.

Requiring Two or More Keys

Since OpenSSH 6.8, the server now remembers which public keys have been used for authentication and
refuses to accept previously-used keys. This allows a set up requiring that users authenticate using two
different public keys.

AuthenticationMethods publickey,publickey

The AuthenticationMethods directive, whether for keys or passwords, can also be set on the server under a
Match directive to apply only to certain groups or situations.

Requiring Certain Key Types

Also since OpenSSH 6.8, the PubkeyAcceptedKeyTypes directive can specify that certain key types are
accepted. Those not in the comma-separated pattern list are not allowed.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

68 sur 82 19/06/2016 16:33

PubkeyAcceptedKeyTypes ssh-ed25519*,ssh-rsa*,ecdsa- sha2*

The actual key types or a pattern can be in the list. Spaces are not allowed in the pattern list. The exact list
of supported key types can be found by the -Q option on the client.

$ ssh -Q key

For host-based authentication, it is the HostbasedAcceptedKeyTypes directive that determines which key
types are allowed for authentication.

Key-based authentication using an Agent

The authentication agent, ssh-agent(1) (http://man.openbsd.org/ssh-agent.1), should be started at the
beginning of the session and used to launch the login session or X-session so that the environment variables
are passed to each subsequent shell pointing to the agent process and its unix-domain socket. Many distros
do this automatically upon login or startup. Starting the agent sets a pair of environment variables:

SSH_AGENT_PID : the process id of the agent
SSH_AUTH_SOCK : the filename and full path to the unix-domain socket

The various SSH and SFTP clients find these variables automatically and use them to contact the agent if
they are set and if one or more keys are loaded. If the shell or desktop session was launched using
ssh-agent(1) (http://man.openbsd.org/ssh-agent.1), then these variables are already set and available. If not,
then it is necessary to set them manually inside each shell or for each application in order to use the agent.

Once the agent is available, a private key only needs to be loaded once and then can be used many times.
Private keys are loaded into the agent with ssh-add(1) (http://man.openbsd.org/ssh-add.1).

$ ssh-add /home/fred/.ssh/mykey_ed25519

It is possible to list the identities currently in the agent. The option -l will list all the fingerprints of the
identities in the agent.

$ ssh-add -l
256 SHA256:77mfUupj364g1WQ+O8NM1ELj0G1QRx/pHtvzvDvD lOk mykey_ed25519 (ED25519)

It is also possible to remove individual identities from the agent using -d which will remove them one at a
time by name, but only if the name is given. Without the name of a private key, it will fail silently. Using -D
will remove all of them at once without needing to specify any by name.

Agent forwarding

In agent forwarding, intermediate machines forward challenges and responses back and forth between the
client and the final destination. This eliminates the need for passwords or keys on any of these intermediate
machines. In other words, an advantage of agent forwarding is that the private key itself is not needed on
any remote machine, thus hindering unwanted access to it. [3] Another advantage is that the actual agent to
which the user has authenticated does not go anywhere and is thus less susceptible to analysis.

The default configuration files for the server enable authentication agent forwarding, so to use it, nothing
needs to be done there. On the client side it is disabled by default and so it must be enabled explicitly. Put
the following line in ssh_config(5) (http://man.openbsd.org/ssh_config.5) to enable agent forwarding for a

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

69 sur 82 19/06/2016 16:33

particular server:

Host gateway.example.org
 ForwardAgent yes

One risk with agents is that they can be re-used to tailgate in if the permissions allow it. Keys cannot be
copied this way, but authentication is possible when there are incorrect permissions. Note that disabling
agent forwarding does not improve security unless users are also denied shell access, as they can always
install their own forwarders.

The risks of agent forwarding can be mitigated by confirming each use of a key by adding the -c option
when adding the key to the agent. This requires the SSH_ASKPASS variable be set and available to the
agent process, but will generate a prompt on the host running the agent upon each use of the key by a
remote system.

Single-purpose keys

Tailored single-purpose keys can eliminate use of remote root logins for administrative activities. A finely
tailored sudoers is needed along with a user account. When done right, it gives just enough access to get the
job done, following the security principle of Least Privilege. Single-purpose keys are accompanied by use of
either the ForceCommand directive in sshd_config(5) (http://man.openbsd.org/ssh_config.5) or the
Command= directive inside the authorized_keys file. Further, neither the authorized_keys file nor the
home directory should be writable. ssh -v can show exactly what is being passed to the server so that
sudoers can be set up correctly when setting up encrypted remote backups using rsync(1)
(http://linux.die.net/man/1/rsync), tar(1) (http://man.openbsd.org/tar.1), mysqldump(1) (http://linux.die.net
/man/1/mysqldump), etc. For example, here is what ssh -v shows from one particular usage of rsync(1)
(http://linux.die.net/man/1/rsync):

$ rsync --server -vlHogDtprz --delete --delete-afte r \
 --ignore-errors . /org/backup

Key-based authentication, with limitations on activity

The authorized_keys file can force a particular program to run whenever the key is used. This is useful for
automating various tasks. The following launches firefox automatically and exits the connection when it is
finished.

command="/usr/bin/firefox" ssh-rsa AAAAB3NzaC1yc2EA AA...OFy5Lwc8Lo+Jk=

The following further restricts the connection to coming from a single domain.

command="/usr/bin/firefox",from="*.example.net" ssh -rsa AAAAB3...FLoJk=

The manual page sshd(8) (http://man.openbsd.org/sshd.8) has the full list of options for the authorized_keys
file.

The following key will only echo some text and then exit, unless used non-interactively with the -N option.
No matter what the user tries, it will echo the text. The -N option will disable running the remote program,
allowing the connection to stay open.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

70 sur 82 19/06/2016 16:33

command="/bin/echo do-not-send-commands" ssh-rsa AA AAB3...99ptc=

This is very useful for keys that are only used for tunnels.

Read-only access to keys

In some cases it is necessary to prevent the users from changing their own authentication keys. This can be
done by putting the key file in an external directory where the user has read-only access to the key file and
no write permissions to either the file or the directory. The AuthorizedKeysFile directive sets where sshd(8)
(http://man.openbsd.org/sshd.8) looks for the keys and can point to the secured location for the keys instead
of the default location.

The default location for keys on most systems is usually ~/.ssh/authorized_keys. A good alternate location
could be to create the directory /etc/ssh/authorized_keys and store the selected users' key files there. The
change can be made to apply to only a group of users by putting it under a Match directive.

Match Group sftpusers
 AuthorizedKeysFile /etc/ssh/authorized_keys /%u

This works even within a chrooted environment.

Match Group sftpusers
 ChrootDirectory /home
 ForceCommand internal-sftp -d %u
 AuthorizedKeysFile /etc/ssh/authorized_keys /%u

Of course it could be set to affect all users by putting the directive in the main part of the server
configuration file.

Mark public keys as revoked

Keys that have been revoked can be stored in /etc/ssh/revoked_keys, a file specified in sshd_config(5)
(http://man.openbsd.org/ssh_config.5) using the directive RevokedKeys, so that sshd(8)
(http://man.openbsd.org/sshd.8) will prevent attempts to log in with them. No warning or error on the client
side will be given if a revoked key is tried. Authentication will simply progress to the next key or method.

The revoked keys file should contain a list of public keys, one per line, that have been revoked and can no
longer be used to connect to the server. The key cannot contain any extras, such as login options or it will be
ignored. If one of the revoked keys is tried during a login attempt, the server will simply ignore it and move
on to the next authentication method. An entry will be made in the logs of the attempt, including the key's
fingerprint. See the section on logging for a little more on that.

RevokedKeys /etc/ssh/revoked_keys

The RevokedKeys configuration directive is not set in sshd_config(5) (http://man.openbsd.org/ssh_config.5)
by default. It must be set explicitly if it is to be used.

Key Revocation Lists

A compact, binary form of representing revoked keys and certificates is available as a Key Revocation List
(KRL). KRLs are generated with ssh-keygen(1) (http://man.openbsd.org/ssh-keygen.1) and can be created

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

71 sur 82 19/06/2016 16:33

fresh or an existing one updated.

$ ssh-keygen -kf /etc/ssh/revoked_keys -z 1 ~/.ssh /old_key_rsa.pub
$ ssh-keygen -ukf /etc/ssh/revoked_keys -z 2 ~/.ssh /old_key_dsa.pub

It is possible to test if a specific key or certificate is in the revocation list.

$ ssh-keygen -Qf /etc/ssh/revoked_keys ~/.ssh/old_ key_rsa.pub

Only public keys and certificates will be loaded into the KRL. Corrupt or broken keys will not be loaded and
will produce an error message if tried. Like with the regular RevokedKeys list, the public key destined for
the KRL cannot contain any extras like login options or it will produce an error when an attempt is made to
load it into the KRL or search the KRL for it.

More on Verifying SSH Keys

Reliable verification of a host key must be done when first connecting. To know the key fingerprint in
advance, it can be necessary to contact the system administrator who can provide it out of band. Use
ssh-keygen on the local console to be absolutely sure.

Here the server's RSA key is read and its fingerprint shown as SHA256 base64:

$ ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub
2048 SHA256:hlPei3IXhkZmo+GBLamiiIaWbeGZMqeTXg15R42 yCC0 root@server.example.net (RSA)

And here the corresponding ECDSA key is read, but shown as an MD5 hexadecimal hash:

$ ssh-keygen -E md5 -lf /etc/ssh/ssh_host_ecdsa_key .pub
256 MD5:ed:d2:34:b4:93:fd:0e:eb:08:ee:b3:c4:b3:4f:2 8:e4 root@server.example.net (ECDSA)

Prior to 6.8, the fingerprint was expressed as an MD5 hexadecimal hash:

$ ssh-keygen -lf /etc/ssh/ssh_host_rsa_key.pub
2048 MD5:e4:a0:f4:19:46:d7:a4:cc:be:ea:9b:65:a7:62: db:2c root@server.example.net (RSA)

It is also possible to use ssh-keyscan(1) (http://man.openbsd.org/ssh-keyscan.1) to get keys from an active
SSH server. However, the fingerprint still needs to be verified out of band then.

Warning: Remote Host Identification Has Changed!

If the server's key does not match what has been recorded in either the system's or the local user's
authorized_keys files, then the SSH client will issue a warning. Two main reasons for the warning exist. One
is when the server's key has been changed, maybe the server was reinstalled without backing up the old
keys. Another situation is when the connection is made to the wrong machine, one such case would be the
during an attempted man in the middle attack or when contacting a server that changes addresses because of
dynamic address allocation.

In cases where the key has changed there is only one thing to do: contact the system administrator and
verify the key. The system administrator may be you yourself in some cases. If so, was OpenSSH-server
recently reinstalled, or was the machine restored from an old backup? The new key fingerprint can be sent
out by some method where it is possible to verify the integrity and origin of the message, for example via

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

72 sur 82 19/06/2016 16:33

PGP-signed e-mail.

Then go over to the client machine where you got the error and remove the old key from ~/.ssh
/known_hosts

$ ssh-keygen -R host.example.org

Then try logging in, but enter the password if and only if the key fingerprint matches what you got on the
server console. If the key fingerprint matches, then go through with the login process and the key will be
automatically added. If the key finger print does not match, stop immediately and it would be a good idea to
get on the phone (a real phone, no computer phones) to the remote machine's system administrator or the
network administrator.

Multiple keys for a host, multiple hosts for a key in known_hosts

Using pattern matching in known_hosts, it is possible to assign multiple host names or ip addresses to the
same key. That goes for both those global keys in /etc/ssh/ssh_known_hosts and those local user-specific
key lists in ~/.ssh/known_hosts. They should provide you with an up-to-date set to add to your known hosts
file. Otherwise, you must verify the keys by hand.

server1,server2,server3 ssh-rsa AAAAB097y0yiblo97gv l...jhvlhjgluibp7y807t08mmniKjug...==

You can use globbing to a limited extent in either /etc/ssh/ssh_known_hosts or ~/.ssh/known_hosts.

172.19.40.* ssh-rsa AAAAB097y0yiblo97gvl...jhvlhjgl uibp7y807t08mmniKjug...==

However, to get the effect you want, multiple keys for the same address, make multiple entries in either
/etc/ssh/ssh_known_hosts or ~/.ssh/known_hosts, one for each key.

server1 ssh-rsa AAAAB097y0yiblo97gvljh...vlhjgluibp 7y807t08mmniKjug...==
server1 ssh-rsa AAAAB0liuouibl kuhlhlu...qerf1dcw16 twc61c6cw1ryer4t...==
server1 ssh-rsa AAAAB568ijh68uhg63wedx...aq14rdfcvb hu865rfgbvcfrt65...==

To get a pool of servers to share a pool of keys, each server-key combination must be added manually to the
known_hosts file.

server1 ssh-rsa AAAAB097y0yiblo97gvljh...07t8mmniKj ug...==
server1 ssh-rsa AAAAB0liuouibl kuhlhlu...qerfw1ryer 4t...==
server1 ssh-rsa AAAAB568ijh68uhg63wedx...aq14rvcfrt 65...==

server2 ssh-rsa AAAAB097y0yiblo97gvljh...07t8mmniKj ug...==
server2 ssh-rsa AAAAB0liuouibl kuhlhlu...qerfw1ryer 4t...==
server2 ssh-rsa AAAAB568ijh68uhg63wedx...aq14rvcfrt 65...==

I'm not quite sure how to get that to work with hashed host names.

This will get the rsa key for server1, put the rsa key in file (e.g. z.key) and give a fingerprint for the key in
that file:

$ ssh-keyscan -t rsa server1
$ ssh-keyscan -t rsa server1 > z.key
$ ssh-keygen -l -f z.key

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

73 sur 82 19/06/2016 16:33

Another way of Dealing with Dynamic (roaming) IP Addresses

It is possible to manually point to the right key using HostKeyAlias either as part of ssh_config(5)
(http://man.openbsd.org/ssh_config.5) or as a runtime parameter. Here the key for machine Foobar is used to
connect to host 192.168.11.15

$ ssh -o CheckIP=no -o StrictHostKeyChecking=no \
 -o HostKeyAlias=foobar 192.168.11.15

This is useful when DHCP is not configured to try to keep the same addresses for the same machines over
time.

Hostkey Update and Rotation in known_hosts

A protocol extension to rotate weak pubic keys out of known_hosts has been in OpenSSH from version
6.8[4] and later. With it the server is able to inform the client of all its host keys and update known_hosts
with them when at least one trusted key already known. The method still requires the private keys be
available to the server [5] so that proofs can be completed. In ssh_config(5) (http://man.openbsd.org
/ssh_config.5), the directive UpdateHostKeys specifies whether the client should accept updates of
additional host keys from the server after authentication is completed and add them to known_hosts. A
server can offer multiple keys of the same type for a period before removing the deprecated key from those
offered, thus allowing an automated option for rotating keys as well as for upfrading from weaker algorithms
to stronger ones.

References

"The Secure Shell (SSH) Authentication Protocol". IETF. 2006. https://tools.ietf.org
/html/rfc4252#section-7. Retrieved 2015-05-06.

1.

Steve Friedl (2006-02-22). "An Illustrated Guide to SSH Agent Forwarding". Unixwiz.net.
http://www.unixwiz.net/techtips/ssh-agent-forwarding.html#chal. Retrieved 2013-04-27.

2.

Daniel Robbins (2002-02-01). "Common threads: OpenSSH key management, Part 3". IBM.
http://www.ibm.com/developerworks/library/l-keyc3/. Retrieved 2013-04-27.

3.

Damien Miller (2015-02-01). "Key rotation in OpenSSH 6.8+". DJM's Personal Weblog.
http://blog.djm.net.au/2015/02/key-rotation-in-openssh-68.html. Retrieved 2016-03-05.

4.

Damien Miller (2015-02-17). "Hostkey rotation, redux". DJM's Personal Weblog.
http://blog.djm.net.au/2015/02/hostkey-rotation-redux.html. Retrieved 2016-03-05.

5.

Cookbook/Proxies and Jump Hosts

A proxy is an intermediary that forwards requests from clients to other servers. Performance improvement,
load balancing, security or access control are some reasons they are used. Some proxies include caching to
save bandwidth and increase speed by avoiding going out to the net to keep retrieving the same, unchanged
documents.

SOCKS Proxy

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

74 sur 82 19/06/2016 16:33

It's possible to connect via an intermediate machine using a SOCKS proxy. SOCKS4 and SOCKS5 proxies
are currently supported by OpenSSH. SOCKS5[1] allows transparent traversal, by an application, of a
firewall or other barrier and can use strong authentication with help of GSS-API.Dynamic application-level
port forwarding allows the outgoing port to be allocated on the fly thus creating a proxy at the TCP session
level.

Here the web browser can connect to the SOCKS proxy on port 3555 on the local host:

$ ssh -D 3555 server.example.org

Using ssh(1) (http://man.openbsd.org/ssh.1) as a SOCKS5 proxy, or in any other capacity where forwarding
is used, you can specify multiple ports in one action:

$ ssh -D 80 -D 8080 -f -C -q -N fred@server.example .org

For example in Firefox, you'll also want the DNS requests to go via your proxy, so changing about:config
needs network.proxy.socks_remote_dns set to true

It'll be similar for other programs that support SOCKS proxies.

You can tunnel samba over ssh(1) (http://man.openbsd.org/ssh.1), too.

Tunneling SSH Over Tor with Netcat

Instead of using ssh(1) (http://man.openbsd.org/ssh.1) as a SOCKS proxy, it is possible to tunnel the SSH
protocol itself over a SOCKS proxy such as Tor (https://www.torproject.org/). Tor is anonymity software and
a corresponding network that uses relay hosts to conceal a user's location and network activity. Its
architecture is intended to prevent surveillance and traffic analysis. Tor can be used in cases where it is
important to conceal the point of origin of the SSH client.

On the end point that the client sees, Tor is a regular SOCKS5 proxy and can be used like any other
SOCKS5 proxy. So this is tunneling SSH over a SOCKS proxy. For example, if Tor is installed locally and
listening on a port, then SSH can run over Tor [2] using netcat (http://man.openbsd.org/nc.1):

$ ssh -o ProxyCommand="nc -X 5 -x localhost:9150 %h %p" server.example.org

If the user name on the remote system is different from that on the local system, it is possible to pass along a
different user name.

$ ssh -o User =fred -o ProxyCommand="nc -X 5 -x localhost:9150 %h %p" server.example.org

When attempting a connection like this, it is very important that it does not leak information. In particular,
the DNS lookup should occur over Tor and not be done by the client itself. Make sure that if
VerifyHostKeyDNS is used that it be set to 'no'. The default is 'no' but check to be sure. It can be passed as
a run-time argument to remove any doubt or uncertainty.

$ ssh -o "VerifyHostKeyDNS=no" -o ProxyCommand="nc -X 5 -x localhost:9150 %h %p" server.example.org

Using the netcat-openbsd nc(1) (http://man.openbsd.org/nc.1) package, this seems not to leak any DNS
information. Other netcat packages might or might not be the same. It's also not clear if there are other ways

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

75 sur 82 19/06/2016 16:33

in which this method might leak information. YMMV.

Jump Hosts -- Passing through a gateway or two

It is possible to connect to another host via an intermediary or two so that the client can act as if the
connection were direct. ProxyCommand works and the utility Netcat fits here, too.

The safest and most straightforward way is to use ssh(1) (http://man.openbsd.org/ssh.1)'s stdio forwarding
(-W) mode to "bounce" the connection through an intermediate host.

$ ssh -o ProxyCommand="ssh -W %h:%p firewall.example.com" server2.example.org

This approach is the safest and supports port-forwarding without needed special tricks.

Another trick, usable with clients that don't support the -W option, is ssh -tt . This forces TTY allocation,
so instead of the above you can do the following, connecting to server2 via firewall as the jump host:

$ ssh -tt firewall.example.com ssh -tt server2.exam ple.org

This opens an ssh terminal to the remote machine. You can also pass commands. For example, to reattach to
a remote screen session using screen (http://linux.die.net/man/1/screen) you can do the following:

$ ssh -tt firewall.example.com ssh -tt server2.exam ple.org screen -dR

The chain can be arbitrarily long and is not limited to just two hosts. The disadvantage of this approach over
stdio-forwarding is that your session, any forwarded agent, X11 server or sockets are exposed to the
intermediate hosts.

Port Forwarding via an Intermediate Host

Tunneling, also called port forwarding, is when a port on one machine mapped to a connection to a port on
another machine. In that way remote services can be accessed as if they were local. Or in the case of reverse
port forwarding, vice verse. Forwarding can be done directly from one machine to another or via a machine
in the middle.

Below we are setting up a tunnel from the localhost to machine2, which is behind a firewall, machine1. The
tunnel will be via machine1 which is publicly accessible and also has access to machine2.

$ ssh -L 2222:machine2.example.org:22 machine1.exam ple.org

Next connecting to the tunnel will actually connect to the second host, machine2.

$ ssh -p 2222 remoteuser@localhost

That's it.

It is possible to use all the options in this way, such as -X for X11 forwarding. Here is an example of running
rsync(1) (http://linux.die.net/man/1/rsync) between the two hosts using machine1 as an intermediary with
the above setup.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

76 sur 82 19/06/2016 16:33

$ rsync -av -e "ssh -p 2222" /path/to/some/dir/ localhost:/path/to/some/dir/

SOCKS proxy via an Intermediate Host

If you want to open a SOCKS proxy via an intermediate host, it is possible:

$ ssh -L 8001:localhost:8002 user1@machine1.example .org -t ssh -D 8002 user2@machine2.example.org

The client will see a SOCKS proxy on port 8001 on the local host, which is actually a connection to
machine1 and traffic will ultimately enter and leave the net through machine2. Port 8001 on the local host
connects to port 8002 on machine1 which is a SOCKS proxy to machine2. The port numbers can be chosen
to be whatever you needed, but forwarding privileged ports still requires root privileges.

ProxyCommand with Netcat

Another way is to use the ProxyCommand configuration directive and netcat (http://man.openbsd.org
/nc.1). The utility nc(1) (http://man.openbsd.org/nc.1) is for reading and writing network connections
directly. It can be used to pass connections onward to a second machine. In this case, login is the final
destination reached via the intermediary jumphost.

$ ssh -o 'ProxyCommand ssh %h nc login.example.edu 22' \
 -o 'HostKeyAlias=login.example.edu' \
 jumphost.example.org

Keys and different login names can also be used. Using ProxyCommand, ssh(1) (http://man.openbsd.org
/ssh.1) will first connect to jumphost and then from there to login.example.edu. The HostKeyAlias directive
is needed to look up the right key for login.example.edu, without it the key for jumphost will be tried and
that will, of course, fail unless both have the same keys. The account user2 exists on jumphost.

$ ssh -o 'ProxyCommand ssh -i key-rsa -l user2 %h nc login.e xample.edu 22' \
 -o 'HostKeyAlias=login.example.edu' \
 jumphost.example.org

It's also possible to make this arrangement more permanent and reduce typing by editing ssh_config Here a
connection is made to host2 via host1:

Host host2.example.org
 ProxyCommand ssh fred@host1.example.org nc %h %p

Here a connection is made to server2 via server1 using the shortcut name 'jump'.

Host jump
 ProxyCommand ssh %h nc server2.example.org 22
 HostKeyAlias server2.example.org
 Hostname server1.example.org
 User fred

It can be made more general:

Host gateway.example.org
 ProxyCommand none

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

77 sur 82 19/06/2016 16:33

Host *.example.org my-private-host
 ProxyCommand ssh myuser@gateway.example.org nc %h %p

The same can be done with sftp(1) (http://man.openbsd.org/sftp.1) by passing parameters on to ssh(1)
(http://man.openbsd.org/ssh.1). Here is a simple example with sftp(1) (http://man.openbsd.org/sftp.1) where
machine1 is the jump host to connect to machine2. The user name is the same for both hosts.

$ sftp -o 'ProxyCommand=ssh %h nc machine2.example.edu 22' \
 -o 'HostKeyAlias=machine2.example.edu' \
 fred@machine1.example.edu

Here is a more complex example using a key for server1 but regular password-based login for the SFTP
server.

$ sftp -o 'ProxyCommand ssh -i /Volumes/Home/fred/.ssh/server 1_rsa \
 -l user2 server1.example.edu nc sftp.example .edu 22' \
 -o 'HostKeyAlias=sftp.example.edu' sftp.example.edu

If the user accounts names are different on the two machines, that works, too. Here, 'user2' is the account on
the second machine which is the final target. The user 'fred' is the account on the intermediary or jump host.

$ ssh -l user2 \
 -o 'ProxyCommand ssh -l fred %h nc machine2.example.or g 22' \
 -o 'HostKeyAlias machine2.example.org' \
 machine1.example.org

Passing through a gateway using netcat mode

As of OpenSSH 5.4[3], a 'netcat mode' can connect stdio on the client to a single port forwarded on the
server. This can also be used to connect using ssh(1) (http://man.openbsd.org/ssh.1), but it needs the
ProxyCommand option either as a run time parameter or as part of ~/.ssh/config. However, it no longer
needs netcat to be installed on the intermediary machine(s). Here is an example of using it in a run time
parameter.

$ ssh -o ProxyCommand="ssh -W %h:%p jumphost.example.org" server.example.org

In that example, authentication will happen twice, first on the jump host and then on the final host where it
will bring up a shell.

The syntax is the same if the gateway is identified in the configuration file. ssh(1) (http://man.openbsd.org
/ssh.1) expands the full name of the gateway and the destination from the configuration file. The following
allows the destination host to be reached by entering ssh server in the terminal.

Host server
 Hostname server.example.org
 ProxyCommand ssh jumphost.example.org -W %h :%p

The same can be done for SFTP. Here the destination SFTP server can be reached by entering sftp

sftpserver and the configuration file takes care of the rest. If there is a mix up with the final host key, then
it is necessary to add in HostKeyAlias to explicitly name which key will be used to identify the destination
system.

Host sftpserver

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

78 sur 82 19/06/2016 16:33

 HostName sftpserver.example.org
 HostKeyAlias sftpserver.example.org
 ProxyCommand ssh jumphost.example.org -W %h :%p

It is possible to add the key for the gateway to the ssh-agent which you have running or else specify it in the
configuration file. The option User refers to the user name on the destination. If the user is the same on both
the destination and the originating machine, then it does not need to be used. If the user name is different on
the gateway, then the -l option can be used in the ProxyCommand option. Here, the user 'fred' on the local
machine, logs into the gateway as 'fred2' and into the destination server as 'fred3'.

Host server
 HostName server.example.org
 User fred3
 ProxyCommand ssh -l fred2 -i /home/fred/.ss h/rsa_key jumphost.example.org -W %h:%p

If both the gateway and destination are using keys, then the option IdentityFile in the config is used to point
to the gateway's private key and the option IdentityFile specified on the commandline points at the
destination's private key.

Host jump
 HostName server.example.org
 IdentityFile /home/fred/.ssh/rsa_key_2
 ProxyCommand ssh -i /home/fred/.ssh/rsa_key jumphost.example.org -W %h:%p

The old way prior to OpenSSH 5.4 used netcat, nc(1).

Host server
 Hostname server.example.org
 ProxyCommand ssh jumphost.example.org nc %h %p

But that should not be used anymore and the netcat mode, provided by -W, should be used instead. The new
way does not require netcat at all on any of the machines.

Recursively chaining gateways

If the route always has the same hosts in the same order, then a straight forward chain can be put in the
configuration file. Here three hosts are chained with the destination being given the shortcut machine3.

Host machine1
 Hostname server.example.org
 User fred
 IdentityFile /home/fred/.ssh/machine1_e2551 9
 Port 2222

Host machine2
 Hostname 192.168.15.21
 User fred
 IdentityFile /home/fred/.ssh/machine2_e2551 9
 Port 2222
 ProxyCommand ssh -W %h:%p machine1

Host machine3
 Hostname 10.42.0.144
 User fred
 IdentityFile /home/fred/.ssh/machine3_e2551 9
 Port 2222
 ProxyCommand ssh -W %h:%p machine2

Thus any machine in the chain can be reached with a single line. For example, the final machine can be
reached with ssh machine3 and worked with as normal. This includes port forwarding and any other

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

79 sur 82 19/06/2016 16:33

capabilities.

Only hostname and, for second and subsequent hosts, ProxyCommand are needed for each Host directive.
If keys are not used, then IdentityFile is not needed. If the user is the same for all hosts, the that can be
skipped. And if the port is the default, then Port can be skipped. If using many keys in the agent at the same
time and the error "too many authentication" pops up on the client end, it might be necessary to add
IdentitiesOnly yes to each host's configuation.

Recursively chaining an arbitrary number of hosts

It is possible to make the configuration more abstract and allow passing through an arbitrary number of
gateways. You can set the user name with -l thanks to the %r@ , but that user name will be used for all host
that you connect to or through. There are limitations resulbting from using the slash as a separator, as there
would be with other symbols. However, it allows use of dirname(1) (http://man.openbsd.org/dirname.1) and
basename(1) (http://man.openbsd.org/basename.1) to process the host names.

Host */*
 ProxyCommand ssh %r@ $(dirname %h) -W $(basename %h):%p

In this way hosts are separated with a slash (/) and can be arbitrary in number[4].

$ ssh host1/host2/host3/host4

If keys are to be used then load them into an agent, then the client figures them out automatically if agent
forwarding with the -A option is used. However, agent forwarding is considered by many to be a security
flaw and a general misfeature. However, because the default for MaxAuthTries on the server is 6, using
keys normally in an agent will limit the number of keys or hops to 6, with server-side logging getting
triggered after half that.

The following configuration uses sed(1) (http://man.openbsd.org/sed.1) to allow different port numbers and
user names using the plus sign (+) as the delimiter for hosts, a colon (:) for ports, and an percentage sign (%)
for user names. The basic structure is ssh -W $() $() and where %h is substituted for the target host
name.

Host *+*
 ProxyCommand ssh -W $(echo %h | sed 's/^.*+//;s/^\([^:]*$\)/\1:22/') $(echo %h | sed 's/+[^+]*$//;s/\([^+%%]*\)%%

The port can be left off for the default of 22 or delimited with a colon (:) for non-standard values[5].

$ ssh host1+host2:2022+host3:2224

As-is, the colons confound sftp(1) (http://man.openbsd.org/sftp.1), so the above configuration will only work
with it using standard ports. If sftp(1) (http://man.openbsd.org/sftp.1) is needed on non-standard ports then
another delimiter, such as an underscore (_), can be configured.

Any user name except the final one can be specified for a given host using the designated delimiter, in the
above it is a percentage sign (%). The destination host's user name is specified with -l and all others can be
joined to their corresponding host name with the delimiter.

$ ssh -l user3 user1%host1+user2%host2+host3

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

80 sur 82 19/06/2016 16:33

If user names are specified, depending on the delimiter, ssh(1) (http://man.openbsd.org/ssh.1) can be unable
to match the final host to an IP number and the key fingerprint in known_hosts. In such cases, it will ask for
verification each time the connection is established, but this should not be a problem if either the equal sign
(=) or percentage sign (%) is used.

Passing through a gateway with an ad hoc VPN

Two subnets can be connected over SSH by configuring the network routing on the end points to use the
tunnel. The result is a VPN. A drawback is that root access is needed on both hosts, or at least sudo(8)
(http://linux.die.net/man/8/sudo) access to ifconfig(8) (http://man.openbsd.org/ifconfig.8) and route(8)
(http://man.openbsd.org/route.8). Note, there are very few instances where use of a VPN is legitimately
called for, not because VPNs are illegal (quite they opposite, indeed data protection laws in many countries
make them absolutely compulsory to protect content in transit) but simply because OpenSSH is usually
flexible enough to complete most routine sysadmin and operational tasks using normal SSH methods as and
when required. This SSH ad-hoc VPN method is therefore needed only very rarely.

Take this example with two networks. One network has the address range 10.0.50.1 through 10.0.50.254.
The other has the address range 172.16.99.1 through 172.16.99.254. Each has a machine, 10.0.50.1 and
172.16.99.1 respectively, that will function as a gateway. Local machine numbering starts with 3 because 2
will be used for the tunnel interfaces on each LAN.

 +----10.0.50.1 172.16.99.1----+
 + 10.0.50.2 ===== 172.16.99.2 +
 | |
10.0.50.3-----+ + ---172.16.99.3
 | |
10.0.50.4-----+ + ---172.16.99.4
 | |
10.0.50.5-----+ + ---172.16.99.5
 | |
10.0.50.etc---+ + ---172.16.99.etc
 | |
10.0.50.254---+ + ---172.16.99.254

First a tun device is created on each machine, a virtual network device for point-to-point IP tunneling. Then
the tun interfaces on these two gateways are then connected by an SSH tunnel. Each tun interface is
assigned an IP address.

The tunnel connects machines 10.0.50.1 and 172.16.99.1 to each other, and each are already connected to
their own local area network (LAN). Here is a VPN with the client as 10.0.50.0/24, remote as
172.16.99.0/24. First, set on the client:

$ ssh -f -w 0:1 192.0.2.15 true
$ ifconfig tun0 10.1.1.1 10.1.1.2 netmask 255.255.2 55.252
$ route add 172.16.99.0/24 10.1.1.2

On the server:

$ ifconfig tun1 10.1.1.2 10.1.1.1 netmask 255.255.2 55.252
$ route add 10.0.50.0/24 10.1.1.1

References

"SOCKS Protocol version 5". IETF. http://tools.ietf.org/html/rfc1928. Retrieved 2011-02-17.1.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

81 sur 82 19/06/2016 16:33

"SSH Over Tor". The Tor Project. 2012-08-28. https://trac.torproject.org/projects/tor/wiki
/doc/TorifyHOWTO/ssh. Retrieved 2013-05-04.

2.

"OpenSSH 5.4 Release Notes". OpenSSH. 2010-04-07. http://www.openssh.com/txt/release-5.4.
Retrieved 2013-04-19.

3.

Josh Hoblitt (2011-09-03). "Recursively chaining SSH ProxyCommand". [Read This Fine Material]
from Joshua Hoblitt. https://joshua.hoblitt.com/rtfm/2011
/09/recursively_chaining_ssh_proxycommand/. Retrieved 2014-02-14.

4.

Mike Hommey (2016-02-08). "SSH through jump hosts, revisited". glandium. https://glandium.org
/blog/?p=3631. Retrieved 2016-02-09.

5.

Retrieved from "https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&oldid=3091785"

This page was last modified on 19 June 2016, at 14:32.
Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may
apply. By using this site, you agree to the Terms of Use and Privacy Policy.

OpenSSH/Print version - Wikibooks, open books for an open world https://en.wikibooks.org/w/index.php?title=OpenSSH/Print_version&pr...

82 sur 82 19/06/2016 16:33

