
Crypto 101

lvh

1

2

Copyright 2013-2016, Laurens Van Houtven
This book is made possible by your donations. If you enjoyed it, please
consider making a donation, so it can be made even better and reach
even more people.
This work is available under the Creative Commons Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) license. You can find the full text of
the license at https://creativecommons.org/licenses/by-nc/4.0/.

The following is a human-readable summary of (and not a substitute
for) the license. You can:

• Share: copy and redistribute the material in any medium or
format

• Adapt: remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow
the license terms:

• Attribution: you must give appropriate credit, provide a link to
the license, and indicate if changes were made. You may do so
in any reasonable manner, but not in any way that suggests the
licensor endorses you or your use.

• NonCommercial: you may not use the material for commercial
purposes.

• No additional restrictions: you may not apply legal terms or
technological measures that legally restrict others from doing
anything the license permits.

https://creativecommons.org/licenses/by-nc/4.0/

3

You do not have to comply with the license for elements of the
material in the public domain or where your use is permitted by an
applicable exception or limitation.

No warranties are given. The license may not give you all of the
permissions necessary for your intended use. For example, other rights
such as publicity, privacy, or moral rights may limit how you use the
material.

Pomidorkowi

4

Contents

Contents 5

I Foreword 10

1 About this book 11

2 Advanced sections 13

3 Development 14

4 Acknowledgments 15

II Building blocks 17

5 Exclusive or 18
5.1 Description . 18
5.2 A few properties of XOR 19
5.3 Bitwise XOR . 20
5.4 One-time pads . 21
5.5 Attacks on ”one-time pads” 23
5.6 Remaining problems 29

5

CONTENTS 6

6 Block ciphers 30
6.1 Description . 30
6.2 AES . 36
6.3 DES and 3DES . 41
6.4 Remaining problems 43

7 Stream ciphers 45
7.1 Description . 45
7.2 A naive attempt with block ciphers 45
7.3 Block cipher modes of operation 53
7.4 CBC mode . 53
7.5 Attacks on CBC mode with predictable IVs 55
7.6 Attacks on CBC mode with the key as the IV 57
7.7 CBC bit flipping attacks 59
7.8 Padding . 62
7.9 CBC padding attacks 63
7.10 Native stream ciphers 71
7.11 RC4 . 73
7.12 Salsa20 . 83
7.13 Native stream ciphers versus modes of operation . . . 85
7.14 CTR mode . 86
7.15 Stream cipher bit flipping attacks 87
7.16 Authenticating modes of operation 88
7.17 Remaining problems 88

8 Key exchange 90
8.1 Description . 90
8.2 Abstract Diffie-Hellman 91
8.3 Diffie-Hellman with discrete logarithms 95
8.4 Diffie-Hellman with elliptic curves 96
8.5 Remaining problems 98

9 Public-key encryption 100
9.1 Description . 100

CONTENTS 7

9.2 Why not use public-key encryption for everything? . 101
9.3 RSA . 102
9.4 Elliptic curve cryptography 108
9.5 Remaining problem: unauthenticated encryption . . 108

10 Hash functions 110
10.1 Description . 110
10.2 MD5 . 112
10.3 SHA-1 . 114
10.4 SHA-2 . 114
10.5 Password storage 116
10.6 Length extension attacks 121
10.7 Hash trees . 123
10.8 Remaining issues 123

11 Message authentication codes 125
11.1 Description . 125
11.2 Combining MAC and message 128
11.3 A naive attempt with hash functions 130
11.4 HMAC . 134
11.5 One-time MACs 136
11.6 Carter-Wegman MAC 140
11.7 Authenticated encryption modes 141
11.8 OCB mode . 143
11.9 GCM mode . 146

12 Signature algorithms 147
12.1 Description . 147
12.2 RSA-based signatures 148
12.3 DSA . 148
12.4 ECDSA . 154
12.5 Repudiable authenticators 154

13 Key derivation functions 156

CONTENTS 8

13.1 Description . 156
13.2 Password strength 158
13.3 PBKDF2 . 158
13.4 bcrypt . 158
13.5 scrypt . 158
13.6 HKDF . 158

14 Random number generators 163
14.1 Introduction . 163
14.2 True random number generators 164
14.3 Cryptographically secure pseudorandom generators . 167
14.4 Yarrow . 168
14.5 Blum Blum Shub 168
14.6 Dual_EC_DRBG . 169
14.7 Mersenne Twister 177

IIIComplete cryptosystems 185

15 SSL andTLS 186
15.1 Description . 186
15.2 Handshakes . 187
15.3 Certificate authorities 188
15.4 Self-signed certificates 189
15.5 Client certificates 189
15.6 Perfect forward secrecy 190
15.7 Attacks . 191
15.8 HSTS . 195
15.9 Certificate pinning 197
15.10Secure configurations 197

16 OpenPGP and GPG 199
16.1 Description . 199
16.2 The web of trust . 200

CONTENTS 9

17 Off-The-Record Messaging (OTR) 203
17.1 Description . 203
17.2 Key exchange . 205
17.3 Data exchange . 209

IV Appendices 210

A Modular arithmetic 211
A.1 Addition and subtraction 212
A.2 Prime numbers . 214
A.3 Multiplication . 216
A.4 Division and modular inverses 216
A.5 Exponentiation . 218
A.6 Exponentiation by squaring 219
A.7 Montgomery ladder exponentiation 221
A.8 Discrete logarithm 227
A.9 Multiplicative order 229

B Elliptic curves 230
B.1 The elliptic curve discrete log problem 232

C Side-channel attacks 234
C.1 Timing attacks . 234
C.2 Power measurement attacks 234

Bibliography 235

Glossary 242

Acronyms 249

Part I

Foreword

10

1

About this book

Lots of people working in cryptography have no deep
concern with real application issues. They are trying to
discover things clever enough to write papers about.

Whitfield Diffie

This book is intended as an introduction to cryptography for pro-
grammers of any skill level. It’s a continuation of a talk of the same
name, which was given by the author at PyCon 2013.

The structure of this book is very similar: it starts with very simple
primitives, and gradually introduces new ones, demonstrating why
they’re necessary. Eventually, all of this is put together into complete,
practical cryptosystems, such as TLS, GPG and OTR.

The goal of this book is not to make anyone a cryptographer or a
security researcher. The goal of this book is to understand how complete

11

CHAPTER 1. ABOUT THIS BOOK 12

cryptosystems work from a bird’s eye view, and how to apply them in
real software.

The exercises accompanying this book focus on teaching cryptogra-
phy by breaking inferior systems. That way, you won’t just ”know” that
some particular thing is broken; you’ll know exactly how it’s broken,
and that you, yourself, armed with little more than some spare time and
your favorite programming language, can break them. By seeing how
these ostensibly secure systems are actually completely broken, you will
understand why all these primitives and constructions are necessary for
complete cryptosystems. Hopefully, these exercises will also leave you
with healthy distrust of DIY cryptography in all its forms.

For a long time, cryptography has been deemed the exclusive realm
of experts. From the many internal leaks we’ve seen over the years of
the internals of both large and small corporations alike, it has become
obvious that that approach is doing more harm than good. We can no
longer afford to keep the two worlds strictly separate. We must join
them into one world where all programmers are educated in the basic
underpinnings of information security, so that they can work together
with information security professionals to produce more secure software
systems for everyone. That does not make people such as penetration
testers and security researchers obsolete or less valuable; quite the
opposite, in fact. By sensitizing all programmers to security concerns,
the need for professional security audits will become more apparent,
not less.

This book hopes to be a bridge: to teach everyday programmers
from any field or specialization to understand just enough cryptography
to do their jobs, or maybe just satisfy their appetite.

2

Advanced sections

This book is intended as a practical guide to cryptography for program-
mers. Some sections go into more depth than they need to in order
to achieve that goal. They’re in the book anyway, just in case you’re
curious; but I generally recommend skipping these sections. They’ll be
marked like this:

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

13

3

Development

The entire Crypto 101 project is publicly developed on GitHub under
the crypto101 organization, including this book.

This is an early pre-release of this book. All of your questions, com-
ments and bug reports are highly appreciated. If you don’t understand
something after reading it, or a sentence is particularly clumsily worded,
that’s a bug and I would very much like to fix it! Of course, if I never
hear about your issue, it’s very hard for me to address…

The copy of this book that you are reading right now is based on
the git commit with hash 90d3119, also known as 0.4.0-75-g90d3119.

14

https://www.github.com/crypto101/book

4

Acknowledgments

This book would not have been possible without the support and con-
tributions of many people, even before the first public release. Some
people reviewed the text, some people provided technical review, and
some people helped with the original talk. In no particular order:

• My wife, Ewa

• Brian Warner

• Oskar Żabik

• Ian Cordasco

• Zooko Wilcox-O’Hearn

• Nathan Nguyen (@nathanhere)

15

CHAPTER 4. ACKNOWLEDGMENTS 16

Following the public release,many more people contributed changes.
I’d like to thank the following people in particular (again, in no partic-
ular order):

• coh2, for work on illustrations

• TinnedTuna, for review work on the XOR section (and others)

• dfc, for work on typography and alternative formats

• jvasile, for work on typefaces and automated builds

• hmmueller, for many, many notes and suggestions

• postboy (Ivan Zuboff), for many reported issues

• EdOverflow, for many contributions

.. as well as the huge number of people that contributed spelling,
grammar and content improvements. Thank you!

Part II

Building blocks

17

5

Exclusive or

5.1 Description

Exclusive or, often called ”XOR”, is a Boolean1 binary2 operator that is
true when either the first input or the second input, but not both, are
true.

Another way to think of XOR is as something called a”programmable
inverter”: one input bit decides whether to invert the other input bit, or
to just pass it through unchanged. ”Inverting” bits is colloquially called
”flipping” bits, a term we’ll use often throughout the book.

In mathematics and cryptography papers, exclusive or is generally
represented by a cross in a circle: ⊕. We’ll use the same notation in
this book:

1Uses only ”true” and ”false” as input and output values.
2Takes two parameters.

18

CHAPTER 5. EXCLUSIVE OR 19

Pi Ci

ki

Pi Ci

ki

The inputs and output here are named as if we’re using XOR as an
encryption operation. On the left, we have the plaintext bit pi. The i
is just an index, since we’ll usually deal with more than one such bit.
On top, we have the key bit ki, that decides whether or not to invert pi.
On the right, we have the ciphertext bit, ci, which is the result of the
XOR operation.

5.2 A few properties of XOR

Since we’ll be dealing with XOR extensively during this book, we’ll
take a closer look at some of its properties. If you’re already familiar
with how XOR works, feel free to skip this section.

We saw that the output of XOR is 1 when one input or the other
(but not both) is 1:

0⊕ 0 = 0 1⊕ 0 = 1

0⊕ 1 = 1 1⊕ 1 = 0

There’s a few useful arithmetic tricks we can derive from that.

CHAPTER 5. EXCLUSIVE OR 20

1. You can apply XOR in any order: a⊕ (b⊕ c) = (a⊕ b)⊕ c

2. You can flip the operands around: a⊕ b = b⊕ a

3. Any bit XOR itself is 0: a⊕ a = 0. If a is 0, then it’s 0⊕ 0 = 0;
if a is 1, then it’s 1⊕ 1 = 0.

4. Any bit XOR 0 is that bit again: a⊕ 0 = a. If a is 0, then it’s
0⊕ 0 = 0; if a is 1, then it’s 1⊕ 0 = 1.

These rules also imply a⊕ b⊕ a = b:

a⊕ b⊕ a = a⊕ a⊕ b (first rule)

= 0⊕ b (second rule)

= b (third rule)

We’ll use this property often when using XOR for encryption; you
can think of that first XOR with a as encrypting, and the second one
as decrypting.

5.3 Bitwise XOR

XOR, as we’ve just defined it, operates only on single bits or Boolean
values. Since we usually deal with values comprised of many bits, most
programming languages provide a ”bitwise XOR”operator: an operator
that performs XOR on the respective bits in a value.

Python, for example, provides the ^ (caret) operator that performs
bitwise XOR on integers. It does this by first expressing those two

CHAPTER 5. EXCLUSIVE OR 21

integers in binary3, and then performing XOR on their respective bits.
Hence the name, bitwise XOR.

73⊕ 87 = 0b1001001⊕ 0b1010111

=

1 0 0 1 0 0 1 (left)
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
1 0 1 0 1 1 1 (right)

= 0 0 1 1 1 1 0

= 0b0011110

= 30

5.4 One-time pads

XOR may seem like an awfully simple, even trivial operator. Even so,
there’s an encryption scheme, called a one-time pad, which consists of
just that single operator. It’s called a one-time pad because it involves
a sequence (the ”pad”) of random bits, and the security of the scheme
depends on only using that pad once. The sequence is called a pad
because it was originally recorded on a physical, paper pad.

This scheme is unique not only in its simplicity, but also because
it has the strongest possible security guarantee. If the bits are truly
random (and therefore unpredictable by an attacker), and the pad is

3Usually, numbers are already stored in binary internally, so this doesn’t actually
take any work. When you see a number prefixed with ”0b”, the remaining digits are a
binary representation.

CHAPTER 5. EXCLUSIVE OR 22

only used once, the attacker learns nothing about the plaintext when
they see a ciphertext.4

Suppose we can translate our plaintext into a sequence of bits. We
also have the pad of random bits, shared between the sender and the
(one or more) recipients. We can compute the ciphertext by taking the
bitwise XOR of the two sequences of bits.

Pi

ki ki

Ci Pi

If an attacker sees the ciphertext, we can prove that they will learn
zero information about the plaintext without the key. This property
is called perfect security. The proof can be understood intuitively by
thinking of XOR as a programmable inverter, and then looking at a
particular bit intercepted by Eve, the eavesdropper.

Let’s say Eve sees that a particular ciphertext bit ci is 1. She has no
idea if the matching plaintext bit pi was 0 or 1, because she has no idea
if the key bit ki was 0 or 1. Since all of the key bits are truly random,
both options are exactly equally probable.

4The attacker does learn that the message exists, and, in this simple scheme, the
length of the message. While this typically isn’t too important, there are situations
where this might matter, and there are secure cryptosystems to both hide the existence
and the length of a message.

CHAPTER 5. EXCLUSIVE OR 23

Pi

ki ki

Ci Pi

Alice Bob

Eve

5.5 Attacks on ”one-time pads”

The one-time pad security guarantee only holds if it is used correctly.
First of all, the one-time pad has to consist of truly random data.
Secondly, the one-time pad can only be used once (hence the name).
Unfortunately, most commercial products that claim to be ”one-time
pads”are snake oil5, and don’t satisfy at least one of those two properties.

Not using truly random data

The first issue is that they use various deterministic constructs to pro-
duce the one-time pad, instead of using truly random data. That isn’t
necessarily insecure: in fact, the most obvious example, a synchronous
stream cipher, is something we’ll see later in the book. However, it
does invalidate the ”unbreakable” security property of one-time pads.
The end user would be better served by a more honest cryptosystem,
instead of one that lies about its security properties.

5”Snake oil” is a term for all sorts of dubious products that claim extraordinary
benefits and features, but don’t really realize any of them.

CHAPTER 5. EXCLUSIVE OR 24

Reusing the ”one-time” pad

The other issue is with key reuse, which is much more serious. Suppose
an attacker gets two ciphertexts with the same ”one-time” pad. The
attacker can then XOR the two ciphertexts, which is also the XOR of
the plaintexts:

c1 ⊕ c2 = (p1 ⊕ k)⊕ (p2 ⊕ k) (definition)

= p1 ⊕ k ⊕ p2 ⊕ k (reorder terms)

= p1 ⊕ p2 ⊕ k ⊕ k (a⊕ b = b⊕ a)

= p1 ⊕ p2 ⊕ 0 (x⊕ x = 0)

= p1 ⊕ p2 (x⊕ 0 = x)

At first sight, that may not seem like an issue. To extract either p1
or p2, you’d need to cancel out the XOR operation, which means you
need to know the other plaintext. The problem is that even the result of
the XOR operation on two plaintexts contains quite a bit information
about the plaintexts themselves. We’ll illustrate this visually with some
images from a broken ”one-time” pad process, starting with figure 5.1
on page 25.

Crib-dragging

A classical approach to breaking multi-time pad systems involves ”crib-
dragging”, a process that uses small sequences that are expected to occur
with high probability. Those sequences are called ”cribs”. The name crib-
dragging originated from the fact that these small ”cribs” are dragged
from left to right across each ciphertext, and from top to bottom across

CHAPTER 5. EXCLUSIVE OR 25

(a) First plaintext. (b) Second plaintext.

(c) First ciphertext. (d) Second ciphertext.

(e) Reused key. (f) XOR of ciphertexts.

Figure 5.1: Two plaintexts, the re-used key, their respective ciphertexts,
and the XOR of the ciphertexts. Information about the plaintexts
clearly leaks through when we XOR the ciphertexts.

CHAPTER 5. EXCLUSIVE OR 26

the ciphertexts, in the hope of finding a match somewhere. Those
matches form the sites of the start, or ”crib”, if you will, of further
decryption.

The idea is fairly simple. Suppose we have several encrypted mes-
sages Ci encrypted with the same ”one-time” pad K.6 If we could
correctly guess the plaintext for one of the messages, let’s say Cj , we’d
know K:

Cj ⊕ Pj = (Pj ⊕K)⊕ Pj

= K ⊕ Pj ⊕ Pj

= K ⊕ 0

= K

Since K is the shared secret, we can now use it to decrypt all of the
other messages, just as if we were the recipient:

Pi = Ci ⊕K for all i

Since we usually can’t guess an entire message, this doesn’t actually
work. However, we might be able to guess parts of a message.

If we guess a few plaintext bits pi correctly for any of the messages,
that would reveal the key bits at that position for all of the messages,
since k = ci ⊕ pi. Hence, all of the plaintext bits at that position
are revealed: using that value for k, we can compute the plaintext bits
pi = ci ⊕ k for all the other messages.

6We use capital letters when referring to an entire message, as opposed to just bits
of a message.

CHAPTER 5. EXCLUSIVE OR 27

Guessing parts of the plaintext is a lot easier than guessing the
entire plaintext. Suppose we know that the plaintext is in English.
There are some sequences that we know will occur very commonly, for
example (the ␣ symbol denotes a space):

• ␣the␣ and variants such as .␣The␣

• ␣of␣ and variants

• ␣to␣ and variants

• ␣and␣ (no variants; only occurs in the middle of a sentence)

• ␣a␣ and variants

If we know more about the plaintext, we can make even better
guesses. For example, if it’s HTTP serving HTML, we would expect
to see things like Content-Type, <a>, and so on.

That only tells us which plaintext sequences are likely, giving us
likely guesses. How do we tell if any of those guesses are correct? If
our guess is correct, we know all the other plaintexts at that position
as well, using the technique described earlier. We could simply look at
those plaintexts and decide if they look correct.

In practice, this process needs to be automated because there are
so many possible guesses. Fortunately that’s quite easy to do. For
example, a very simple but effective method is to count how often dif-
ferent symbols occur in the guessed plaintexts: if the messages contain
English text, we’d expect to see a lot of letters e, t, a, o, i, n. If we’re
seeing binary nonsense instead, we know that the guess was probably
incorrect, or perhaps that message is actually binary data.

CHAPTER 5. EXCLUSIVE OR 28

These small, highly probable sequences are called ”cribs” because
they’re the start of a larger decryption process. Suppose your crib, ␣the␣,
was successful and found the five-letter sequence t␣thr in another
message. You can then use a dictionary to find common words starting
with thr, such as through. If that guess were correct, it would reveal
four more bytes in all of the ciphertexts, which can be used to reveal
even more. Similarly, you can use the dictionary to find words ending
in t.

This becomes even more effective for some plaintexts that we know
more about. If some HTTP data has the plaintext ent-Len in it, then
we can expand that to Content-Length:␣, revealing many more bytes.

While this technique works as soon as two messages are encrypted
with the same key, it’s clear that this becomes even easier with more
ciphertexts using the same key, since all of the steps become more
effective:

• We get more cribbing positions.

• More plaintext bytes are revealed with each successful crib and
guess, leading to more guessing options elsewhere.

• More ciphertexts are available for any given position, making
guess validation easier and sometimes more accurate.

These are just simple ideas for breaking multi-time pads. While
they’re already quite effective, people have invented even more effective
methods by applying advanced, statistical models based on natural
language analysis. This only demonstrates further just how broken
multi-time pads are. [35]

CHAPTER 5. EXCLUSIVE OR 29

5.6 Remaining problems

Real one-time pads, implemented properly, have an extremely strong
security guarantee. It would appear, then, that cryptography is over:
encryption is a solved problem, and we can all go home. Obviously,
that’s not the case.

One-time pads are rarely used, because they are horribly impractical:
the key is at least as large as all information you’d like to transmit, put
together. Plus, you’d have to exchange those keys securely, ahead of
time, with all people you’d like to communicate with. We’d like to
communicate securely with everyone on the Internet, and that’s a very
large number of people. Furthermore, since the keys have to consist of
truly random data for its security property to hold, key generation is
fairly difficult and time-consuming without specialized hardware.

One-time pads pose a trade-off. It’s an algorithm with a solid
information-theoretic security guarantee, which you can not get from
any other system. On the other hand, it also has extremely impractical
key exchange requirements. However, as we’ll see throughout this
book, secure symmetric encryption algorithms aren’t the pain point of
modern cryptosystems. Cryptographers have designed plenty of those,
while practical key management remains one of the toughest challenges
facing modern cryptography. One-time pads may solve a problem, but
it’s the wrong problem.

While they may have their uses, they’re obviously not a panacea. We
need something with manageable key sizes while maintaining secrecy.
We need ways to negotiate keys over the Internet with people we’ve
never met before.

6

Block ciphers

Few false ideas have more firmly gripped the minds
of so many intelligent men than the one that, if they just
tried, they could invent a cipher that no one could break.

David Kahn

6.1 Description

A block cipher is an algorithm that allows us to encrypt blocks of a
fixed length. It provides an encryption function E that turns plaintext
blocks P into ciphertext blocks C, using a secret key k:

C = E(k, P) (6.1)

30

CHAPTER 6. BLOCK CIPHERS 31

The plaintext and ciphertext blocks are sequences of bytes. They are
always the same size as one another, and that size is fixed by the block
cipher: it’s called the block cipher’s block size. The set of all possible
keys is called the keyspace.

Once we’ve encrypted plaintext blocks into ciphertext blocks, they
later have to be decrypted again to recover the original plaintext block.
This is done using a decryption function D, which takes the ciphertext
block C and the key k (the same one used to encrypt the block) as
inputs, and produces the original plaintext block P .

P = D(k,C) (6.2)

Or, in blocks:

E D
P PC

k k

Block ciphers are an example of a symmetric-key encryption scheme,
also known as a secret-key encryption scheme. This means that the same
secret key is used for both encryption and decryption. We will contrast
this with public-key encryption algorithms, which have a distinct key
for encryption and decryption, later in the book.

A block cipher is a keyed permutation. It’s a permutation, because
the block cipher maps every possible block to some other block. It’s
also a keyed permutation, because the key determines exactly which
blocks map to which.

CHAPTER 6. BLOCK CIPHERS 32

We’ll illustrate this by looking at a block cipher with an impractical,
tiny 4-bit block size, so 24 = 16 possible blocks. Since each of those
blocks maps to a hexadecimal digit, we’ll represent the blocks by that
digit. Figure 6.1 illustrates the blocks that the cipher operates on.

0 F

1

2

3

4

5

6

7 8

9

A

B

C

D

E

Figure 6.1: All of the 16 nodes operated on by the block cipher. Each
node is designated by a hexadecimal digit.

Once we select a secret key, the block cipher will use that to de-
termine what the encryption of any given block is. We will illustrate
that relationship with an arrow: the block at the start of the arrow,
encrypted using E under key k, is mapped to the block at the end of

CHAPTER 6. BLOCK CIPHERS 33

the arrow.

0
F

1

2 7

3

4

5

C

6

9

E

8

D

A

B

Figure 6.2: An encryption permutation produced by the block cipher
under a particular key k.

In figure 6.2, you’ll notice that the permutation isn’t just one big
cycle: there’s a large cycle of 7 elements, and several smaller cycles of
4, 3 and 2 elements each. It’s also perfectly possible that an element
encrypts to itself. This is to be expected when selecting random permu-
tations, which is approximately what a block cipher is doing; it doesn’t
demonstrate a bug in the block cipher.

When you’re decrypting instead of encrypting, the block cipher
just computes the inverse permutation. In figure 6.3, you can see that

CHAPTER 6. BLOCK CIPHERS 34

we get the same illustration, except that all the arrows are going in the
other direction.

0
F

1

9

2

3

C

4

5

6

B

7
8 A

D
E

Figure 6.3: The decryption permutation produced by the block cipher
under the same key k: the inverse of the encryption permutation, that
is: all the arrows have been reversed.

The only way to know which block maps to which other block, is
to know the key. A different key will lead to a completely different set
of arrows, as you can see in figure 6.4.

In this illustration, you’ll notice that there’s even two permutations
of length 1: an element that maps to itself. This is again something to
be expected when selecting random permutations.

CHAPTER 6. BLOCK CIPHERS 35

0

6

1A

2 C

3
B

4

F 5

8

7

9

D

E

Figure 6.4: An encryption permutation produced by the block cipher
under some other key.

Knowing a bunch of (input, output) pairs for a given key shouldn’t
give you any information about any other (input, output) pairs under
that key1. As long as we’re talking about a hypothetical perfect block
cipher, there’s no easier way to decrypt a block other than to ”brute-
force” the key: i.e. just try every single one of them until you find the
right one.

1The attentive reader may have noticed that this breaks in the extremes: if you
know all but one of the pairs, then you know the last one by exclusion.

CHAPTER 6. BLOCK CIPHERS 36

Our toy illustration block cipher only has 4 bit blocks, or 24 = 16

possibilities. Real, modern block ciphers have much larger block sizes,
such as 128 bits, or 2128 (slightly more than 1038.5) possible blocks.
Mathematics tells us that there are n! (pronounced ”n factorial”) dif-
ferent permutations of an n element set. It’s defined as the product of
all of the numbers from 1 up to and including n:

n! = 1 · 2 · 3 · . . . · (n− 1) · n

Factorials grow incredibly quickly. For example, 5! = 120, 10! =
3628800, and the rate continues to increase. The number of permuta-
tions of the set of blocks of a cipher with a 128 bit block size is (2128)!.
Just 2128 is large already (it takes 39 digits to write it down), so (2128)! is
a mind-bogglingly huge number, impossible to comprehend. Common
key sizes are only in the range of 128 to 256 bits, so there are only
between 2128 and 2256 permutations a cipher can perform. That’s just a
tiny fraction of all possible permutations of the blocks, but that’s okay:
that tiny fraction is still nowhere near small enough for an attacker to
just try them all.

Of course, a block cipher should be as easy to compute as possible,
as long as it doesn’t sacrifice any of the above properties.

6.2 AES

The most common block cipher in current use is Advanced Encryption
Standard (AES).

Contrary to its predecessor DES (which we’ll look at in more detail
in the next chapter), AES was selected through a public, peer-reviewed

CHAPTER 6. BLOCK CIPHERS 37

competition following an open call for proposals. This competition
involved several rounds where all of the contestants were presented,
subject to extensive cryptanalysis, and voted upon. TheAES process was
well-received among cryptographers, and similar processes are generally
considered to be the preferred way to select cryptographic standards.

Prior to being chosen as the Advanced Encryption Standard, the
algorithm was known as Rijndael, a name derived from the two last
names of the Belgian cryptographers that designed it: Vincent Rijmen
and Joan Daemen. The Rijndael algorithm defined a family of block
ciphers, with block sizes and key sizes that could be any multiple of
32 bits between 128 bits and 256 bits. [16] When Rijndael became
AES through the Federal Information Processing Standards (FIPS)
standardization process, the parameters were restricted to a block size
of 128 bits and keys sizes of 128, 192 and 256 bits. [1]

There are no practical attacks known against AES.While there have
been some developments in the last few years, most of them involve
related-key attacks [10], some of them only on reduced-round versions
of AES [9].

A related key attack involves making some predictions about how
AES will behave with two different keys with some specific mathemat-
ical relation. Those predictions provide some information about what
identical (input, output) pairs will look like under those related keys.
Most of these attacks attempt to recover the key, or at least parts of it.

While a theoretically ideal block cipher wouldn’t be vulnerable to
a related key attack, these attacks aren’t considered practical concerns.
Because cryptographic keys are cryptographically random, the odds
of selecting two such related keys is nonexistent. Such attacks are

CHAPTER 6. BLOCK CIPHERS 38

interesting from an academic perspective: they can help provide insight
in the workings of the cipher, guiding cryptographers in designing
future ciphers and attacks against current ciphers.

A closer look at Rijndael

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

AES consists of several independent steps. At a high level, AES is a
substitution-permutation network.

Key schedule

AES requires separate keys for each round in the next steps. The key
schedule is the process which AES uses to derive 128-bit keys for each
round from one master key.

First, the key is separated into 4 byte columns. The key is rotated
and then each byte is run through an S-box (substitution box) that
maps it to something else. Each column is then XORed with a round
constant. The last step is to xor the result with the previous round key.

The other columns are then XORed with the previous round key
to produce the remaining columns.

SubBytes

SubBytes is the S-box (substitution box) in AES. It is 8× 8 bits in size.

CHAPTER 6. BLOCK CIPHERS 39

It works by taking the multiplicative inverse over the Galois field,
and then applying an affine transformation so that there are no values
x so that x⊕S(x) = 0 or x⊕S(x) = 0xff. To rephrase: there are no
values of x that the substitution box maps to x itself, or x with all bits
flipped. This makes the cipher resistant to differential attacks, unlike
the earlier DES algorithm, whose fifth S-box caused serious security
problems. 2

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

a2,2 b2,2

7→

S

ShiftRows

After having applied the SubBytes step to the 16 bytes of the block,
AES shifts the rows in the 4× 4 array:

MixColumns

MixColumns multiplies each column of the state with a fixed polyno-
mial.

2In its defense, differential attacks were not publicly known back when DES was
designed.

CHAPTER 6. BLOCK CIPHERS 40

a0,0 a0,1 a0,2 a0,3rotate 0←

a1,0 a1,1 a1,2 a1,3rotate 1←

a2,0 a2,1 a2,2 a2,3rotate 2←

a3,0 a3,1 a3,2 a3,3rotate 3←

b0,0 b0,1 b0,2 b0,3

b1,1 b1,2 b1,3 b1,0

b2,2 b2,3 b2,0 b2,1

b3,3 b3,0 b3,1 b3,2

7→

ShiftRows and MixColumns represent the diffusion properties of
AES.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

a0,2 b0,2

a1,2 b1,2

a2,2 b2,2

a3,2 b3,2

7→

⊗c(x)

AddRoundKey

As the name implies, the AddRoundKey step adds the bytes from the
round key produced by the key schedule to the state of the cipher.

CHAPTER 6. BLOCK CIPHERS 41

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

a2,2 b2,2

k2,2

7→

6.3 DES and 3DES

The Data Encryption Standard (DES) is one of the oldest block ciphers
that saw widespread use. It was published as an official FIPS standard
in 1977. It is no longer considered secure, mainly due to its tiny key
size of 56 bits. (The DES algorithm actually takes a 64 bit key input,
but the remaining 8 bits are only used for parity checking, and are
discarded immediately.) It shouldn’t be used in new systems. On
modern hardware, DES can be brute forced in less than a day. [22]

In an effort to extend the life of the DES algorithm, in a way that
allowed much of the spent hardware development effort to be reused,
people came up with 3DES: a scheme where input is first encrypted,

CHAPTER 6. BLOCK CIPHERS 42

then decrypted, then encrypted again:

C = EDES(k1, DDES(k2, EDES(k3, p))) (6.3)

This scheme provides two improvements:

• By applying the algorithm three times, the cipher becomes harder
to attack directly through cryptanalysis.

• By having the option of using many more total key bits, spread
over the three keys, the set of all possible keys becomes much
larger, making brute-forcing impractical.

The three keys could all be chosen independently (yielding 168
key bits), or k3 = k1 (yielding 112 key bits), or k1 = k2 = k3, which,
of course, is just plain old DES (with 56 key bits). In the last keying
option, the middle decryption reverses the first encryption, so you
really only get the effect of the last encryption. This is intended as a
backwards compatibility mode for existing DES systems. If 3DES had
been defined as E(k1, E(k2, E(k3, p))), it would have been impossible
to use 3DES implementations for systems that required compatibility
with DES.This is particularly important for hardware implementations,
where it is not always possible to provide a secondary, regular ”single
DES” interface next to the primary 3DES interface.

Some attacks on 3DES are known, reducing their effective security.
While breaking 3DES with the first keying option is currently imprac-
tical, 3DES is a poor choice for any modern cryptosystem. The security
margin is already small, and continues to shrink as cryptographic attacks
improve and processing power grows.

CHAPTER 6. BLOCK CIPHERS 43

Far better alternatives, such as AES, are available. Not only are they
more secure than 3DES, they are also generally much, much faster. On
the same hardware and in the same mode of operation (we’ll explain
what that means in the next chapter), AES-128 only takes 12.6 cycles
per byte, while 3DES takes up to 134.5 cycles per byte. [17] Despite
being worse from a security point of view, it is literally an order of
magnitude slower.

While more iterations of DES might increase the security margin,
they aren’t used in practice. First of all, the process has never been
standardized beyond three iterations. Also, the performance only be-
comes worse as you add more iterations. Finally, increasing the key bits
has diminishing security returns, only increasing the security level of
the resulting algorithm by a smaller amount as the number of key bits
increases. While 3DES with keying option 1 has a key length of 168
bits, the effective security level is estimated at only 112 bits.

Even though 3DES is significantly worse in terms of performance
and slightly worse in terms of security, 3DES is still the workhorse of the
financial industry. With a plethora of standards already in existence and
new ones continuing to be created, in such an extremely technologically
conservative industry where Fortran and Cobol still reign supreme on
massive mainframes, it will probably continue to be used for many years
to come, unless there are some large cryptanalytic breakthroughs that
threaten the security of 3DES.

6.4 Remaining problems

Even with block ciphers, there are still some unsolved problems.

CHAPTER 6. BLOCK CIPHERS 44

For example, we can only send messages of a very limited length:
the block length of the block cipher. Obviously, we’d like to be able to
send much larger messages, or, ideally, streams of indeterminate size.
We’ll address this problem with a stream cipher.

Although we have reduced the key size drastically (from the total
size all data ever sent under a one-time pad scheme versus a few bytes
for most block ciphers), we still need to address the issue of agreeing on
those few key bytes, potentially over an insecure channel. We’ll address
this problem in a later chapter with a key exchange protocol.

7

Stream ciphers

7.1 Description

A stream cipher is a symmetric-key encryption algorithm that encrypts
a stream of bits. Ideally, that stream could be as long as we’d like;
real-world stream ciphers have limits, but they are normally sufficiently
large that they don’t pose a practical problem.

7.2 A naive attempt with block ciphers

Let’s try to build a stream cipher using the tools we already have. Since
we already have block ciphers, we could simply divide an incoming

45

CHAPTER 7. STREAM CIPHERS 46

stream into different blocks, and encrypt each block:

abcdefgh︸ ︷︷ ︸ ijklmno︸ ︷︷ ︸ pqrstuvw︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
PVMEHQOM

︷ ︸︸ ︷
MEEZSNFM ...

(7.1)

This scheme is called ECB mode (Electronic Code Book Mode),
and it is one of the many ways that block ciphers can be used to construct
stream ciphers. Unfortunately, while being very common in home-
grown cryptosystems, it poses very serious security flaws. For example,
in ECB mode, identical input blocks will always map to identical output
blocks:

abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ abcdefgh︸ ︷︷ ︸ ...

↓ ↓ ↓︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW

︷ ︸︸ ︷
APOHGMMW ...

(7.2)

At first, this might not seem like a particularly serious problem.
Assuming the block cipher is secure, it doesn’t look like an attacker
would be able to decrypt anything. By dividing the ciphertext stream
up into blocks, an attacker would only be able to see that a ciphertext
block, and therefore a plaintext block, was repeated.

We’ll now illustrate the many flaws of ECB mode with two attacks.
First, we’ll exploit the fact that repeating plaintext blocks result in
repeating ciphertext blocks, by visually inspecting an encrypted image.
Then, we’ll demonstrate that attackers can often decrypt messages
encrypted in ECB mode by communicating with the person performing
the encryption.

CHAPTER 7. STREAM CIPHERS 47

Visual inspection of an encrypted stream

To demonstrate that this is, in fact, a serious problem, we’ll use a
simulated block cipher of various block sizes and apply it to an image1.
We’ll then visually inspect the different outputs.

Because identical blocks of pixels in the plaintext will map to iden-
tical blocks of pixels in the ciphertext, the global structure of the image
is largely preserved.

As you can see, the situation appears to get slightly better with
larger block sizes, but the fundamental problem still remains: the
macrostructure of the image remains visible in all but the most extreme
block sizes. Furthermore, all but the smallest of these block sizes are
unrealistically large. For an uncompressed bitmap with three color
channels of 8 bit depth, each pixel takes 24 bits to store. Since the
block size of AES is only 128 bits, that would equate to 128

24 or just
over 5 pixels per block. That’s significantly fewer pixels per block than
the larger block sizes in the example. But AES is the workhorse of
modern block ciphers—it can’t be at fault, certainly not because of an
insufficient block size.

When we look at a picture of what would happen with an idealized
encryption scheme, we notice that it looks like random noise. Keep
in mind that ”looking like random noise” doesn’t mean something is
properly encrypted: it just means that we can’t inspect it using methods
this trivial.

1This particular demonstration only works on uncompressed bitmaps. For other
media, the effect isn’t significantly less damning: it’s just less visual.

CHAPTER 7. STREAM CIPHERS 48

(a) Plaintext image, 2000 by 1400
pixels, 24 bit color depth.

(b) ECB mode ciphertext, 5 pixel
(120 bit) block size.

(c) ECB mode ciphertext, 30 pixel
(720 bit) block size.

(d) ECB mode ciphertext, 100
pixel (2400 bit) block size.

(e) ECB mode ciphertext, 400 pixel
(9600 bit) block size.

(f) Ciphertext under idealized en-
cryption.

Figure 7.1: Plaintext image with ciphertext images under idealized
encryption and ECB mode encryption with various block sizes. In-
formation about the macro-structure of the image clearly leaks. This
becomes less apparent as block sizes increase, but only at block sizes
far larger than typical block ciphers. Only the first block size (figure b,
a block size of 5 pixels or 120 bits) is realistic.

CHAPTER 7. STREAM CIPHERS 49

Encryption oracle attack

In the previous section, we’ve focused on how an attacker can inspect
a ciphertext encrypted using ECB mode. That’s a passive, ciphertext-
only attack. It’s passive because the attacker doesn’t really interfere
in any communication; they’re simply examining a ciphertext. In this
section, we’ll study a different, active attack, where the attacker actively
communicates with their target. We’ll see how the active attack can
enable an attacker to decrypt ciphertexts encrypted using ECB mode.

To do this, we’ll introduce a new concept called an oracle. Formally
defined oracles are used in the study of computer science, but for our
purposes it’s sufficient to just say that an oracle is something that will
compute some particular function for you.

In our case, the oracle will perform a specific encryption for the
attacker, which is why it’s called an encryption oracle. Given some data
A chosen by the attacker, the oracle will encrypt that data, followed by
a secret suffix S, in ECB mode. Or, in symbols:

C = ECB(Ek, A‖S)

The secret suffix S is specific to this system. The attacker’s goal
is to decrypt it. We’ll see that being able to encrypt other messages
surprisingly allows the attacker to decrypt the suffix. This oracle might
seem artificial, but is quite common in practice. A simple example
would be a cookie encrypted with ECB, where the prefix A is a name
or an e-mail address field, controlled by the attacker.

You can see why the concept of an oracle is important here: the
attacker would not be able to compute C themselves, since they do
not have access to the encryption key k or the secret suffix S. The goal

CHAPTER 7. STREAM CIPHERS 50

of the oracle is for those values to remain secret, but we’ll see how an
attacker will be able to recover the secret suffix S (but not the key k)
anyway. The attacker does this by inspecting the ciphertext C for many
carefully chosen values of the attacker-chosen prefix A.

Assuming that an attacker would have access to such an oracle
might seem like a very artificial scenario. It turns out that in practice, a
lot of software can be tricked into behaving like one. Even if an attacker
can’t control the real software as precisely as they can query an oracle, the
attacker generally isn’t thwarted. Time is on their side: they only have
to convince the software to give the answer they want once. Systems
where part of the message is secret and part of the message can be
influenced by the attacker are actually very common, and, unfortunately,
so is ECB mode.

Decrypting a block using the oracle

The attacker starts by sending in a plaintextA that’s just one byte shorter
than the block size. That means the block that’s being encrypted will
consist of those bytes, plus the first byte of S, which we’ll call s0. The
attacker remembers the encrypted block. They don’t know the value
of s0 yet, but now they do know the value of the first encrypted block:
Ek(A‖s0). In the illustration, this is block CR1:

Then, the attacker tries a full-size block, trying all possible values
for the final byte. Eventually, they’ll find the value of s0; they know the
guess is correct because the resulting ciphertext block will match the
ciphertext block CR1 they remembered earlier.

The attacker can repeat this for the penultimate byte. They submit
a plaintext A that’s two bytes shorter than the block size. The oracle

CHAPTER 7. STREAM CIPHERS 51

b− 1 1

A

s0

S{
Ek

CR1

b

a

A S{
Ek

C

will encrypt a first block consisting of that A followed by the first two
bytes of the secret suffix, s0s1. The attacker remembers that block.

b− 2 2

A

s0 s1

S{
Ek

CR2

Since the attacker already knows s0, they try A‖s0 followed by all
possible values of s1. Eventually they’ll guess correctly, which, again,

CHAPTER 7. STREAM CIPHERS 52

they’ll know because the ciphertext blocks match:

b

as0

A S{
Ek

C

The attacker can then rinse and repeat, eventually decrypting an
entire block. This allows them to brute-force a block in p · b attempts,
where p is the number of possible values for each byte (so, for 8-bit
bytes, that’s 28 = 256) and b is the block size. This is much better
than a regular brute-force attack, where an attacker has to try all of the
possible blocks, which would be:

p · p . . . · p︸ ︷︷ ︸
b positions

= pb

For a typical block size of 16 bytes (or 128 bits), brute forcing would
mean trying 25616 combinations. That’s a huge, 39-digit number. It’s so
large that trying all of those combinations is considered impossible. An
ECB encryption oracle allows an attacker to do it in at most 256 ·16 =

4096 tries, a far more manageable number.

Conclusion

In the real world, block ciphers are used in systems that encrypt large
amounts of data all the time. We’ve seen that when using ECB mode,

CHAPTER 7. STREAM CIPHERS 53

an attacker can both analyze ciphertexts to recognize repeating patterns,
and even decrypt messages when given access to an encryption oracle.

Even when we use idealized block ciphers with unrealistic prop-
erties, such as block sizes of more than a thousand bits, an attacker
ends up being able to decrypt the ciphertexts. Real world block ciphers
only have more limitations than our idealized examples, such as much
smaller block sizes.

We aren’t even taking into account any potential weaknesses in the
block cipher. It’s not AES (or our test block ciphers) that cause this
problem, it’s our ECB construction. Clearly, we need something better.

7.3 Block cipher modes of operation

One of the more common ways of producing a stream cipher is to use
a block cipher in a particular configuration. The compound system
behaves like a stream cipher. These configurations are commonly called
modes of operation. They aren’t specific to a particular block cipher.

ECB mode, which we’ve just seen, is the simplest such mode of
operation. The letters ECB stand for electronic code book2. For reasons
we’ve already gone into, ECB mode is very ineffective. Fortunately,
there are plenty of other choices.

7.4 CBC mode

CBC mode, which stands for cipher block chaining, is a very common
mode of operation where plaintext blocks are XORed with the previous

2Traditionally,modes of operation seem to be referred to by a three-letter acronym.

CHAPTER 7. STREAM CIPHERS 54

ciphertext block before being encrypted by the block cipher.
Of course, this leaves us with a problem for the first plaintext block:

there is no previous ciphertext block to XOR it with. Instead, we pick
an initialization vector (IV): a random number that takes the place
of the ”first” ciphertext in this construction. Initialization vectors also
appear in many other algorithms. An initialization vector should be
unpredictable; ideally, they will be cryptographically random. They
do not have to be secret: IVs are typically just added to ciphertext
messages in plaintext. It may sound contradictory that something has
to be unpredictable, but doesn’t have to be secret; it’s important to
remember that an attacker must not be able to predict ahead of time
what a given IV will be. We will illustrate this later with an attack on
predictable CBC IVs.

The following diagram demonstrates encryption in CBC mode:

P1 P2 P3

k k kE E E

C1 C2 C3

. . .

IV

Decryption is the inverse construction, with block ciphers in de-
cryption mode instead of encryption mode:

CHAPTER 7. STREAM CIPHERS 55

C1 C2 C3

k k kD D D

P1 P2 P3

. . .

IV

While CBC mode itself is not inherently insecure (unlike ECB
mode), its particular use in TLS 1.0 was. This eventually led to the
Browser Exploit Against SSL/TLS (BEAST) attack, which we’ll cover
in more detail in the section on SSL/TLS. The short version is that
instead of using unpredictable initialization vectors, for example by
choosing random IVs, the standard used the previous ciphertext block
as the IV for the next message. Unfortunately, it turns out that attackers
figured out how to exploit that property.

7.5 Attacks on CBC mode with predictable IVs

Suppose there’s a database that stores secret user information, like
medical, payroll or even criminal records. In order to protect that
information, the server that handles it encrypts it using a strong block
cipher in CBC mode with a fixed key. For now, we’ll assume that that
server is secure, and there’s no way to get it to leak the key.

CHAPTER 7. STREAM CIPHERS 56

Mallory gets a hold of all of the rows in the database. Perhaps she
did it through a SQL injection attack, or maybe with a little social
engineering.3 Everything is supposed to remain secure: Mallory only
has the ciphertexts, but she doesn’t have the secret key.

Mallory wants to figure out what Alice’s record says. For simplicity’s
sake, let’s say there’s only one ciphertext block. That means Alice’s
ciphertext consists of an IV and one ciphertext block.

Mallory can still try to use the application as a normal user,meaning
that the application will encrypt some data of Mallory’s choosing and
write it to the database. Suppose that through a bug in the server,
Mallory can predict the IV that will be used for her ciphertext. Perhaps
the server always uses the same IV for the same person, or always uses
an all-zero IV, or…

Mallory can construct her plaintext using Alice’s IV IVA (which
Mallory can see) and her own predicted IV IVM . She makes a guess
G as to what Alice’s data could be. She asks the server to encrypt:

PM = IVM ⊕ IVA ⊕G

The server dutifully encrypts that message using the predicted IV
IVM . It computes:

CM = E(k, IVM ⊕ PM)

= E(k, IVM ⊕ (IVM ⊕ IVA ⊕G))

= E(k, IVA ⊕G)

3Social engineering means tricking people into things they shouldn’t be doing, like
giving out secret keys, or performing certain operations. It’s usually the most effective
way to break otherwise secure cryptosystems.

CHAPTER 7. STREAM CIPHERS 57

That ciphertext, CM, is exactly the ciphertext block Alice would
have had if her plaintext block was G. So, depending on what the data
is, Mallory has figured out if Alice has a criminal record or not, or
perhaps some kind of embarrassing disease, or some other issue that
Alice really expected the server to keep secret.

Lessons learned: don’t let IVs be predictable. Also, don’t roll your
own cryptosystems. In a secure system, Alice and Mallory’s records
probably wouldn’t be encrypted using the same key.

7.6 Attacks on CBC mode with the key as the IV

Many CBC systems set the key as the initialization vector. This seems
like a good idea: you always need a shared secret key already anyway. It
yields a nice performance benefit, because the sender and the receiver
don’t have to communicate the IV explicitly, they already know the
key (and therefore the IV) ahead of time. Plus, the key is definitely
unpredictable because it’s secret: if it were predictable, the attacker
could just predict the key directly and already have won. Conveniently,
many block ciphers have block sizes that are the same length or less
than the key size, so the key is big enough.

This setup is completely insecure. If Alice sends a message to Bob,
Mallory, an active adversary that can intercept and modify the message
can perform a chosen ciphertext attack to recover the key.

Alice turns her plaintext message P into three blocks P1P2P3 and
encrypts it in CBC mode with the secret key k and also uses k as the
IV. She gets a three block ciphertext C = C1C2C3, which she sends to
Bob.

CHAPTER 7. STREAM CIPHERS 58

Before the message reaches Bob,Mallory intercepts it. She modifies
the message to be C ′ = C1ZC1, where Z is a block filled with null
bytes (value zero).

Bob decrypts C ′, and gets the three plaintext blocks P ′
1, P

′
2, P

′
3:

P ′
1 = D(k,C1)⊕ IV

= D(k,C1)⊕ k

= P1

P ′
2 = D(k, Z)⊕ C1

= R

P ′
3 = D(k,C1)⊕ Z

= D(k,C1)

= P1 ⊕ IV

R is some random block. Its value doesn’t matter.
Under the chosen-ciphertext attack assumption, Mallory recovers

that decryption. She is only interested in the first block (P ′
1 = P1)

and the third block (P ′
3 = P1 ⊕ IV). By XORing those two together,

she finds (P1 ⊕ IV) ⊕ P1 = IV . But, the IV is the key, so Mallory
successfully recovered the key by modifying a single message.

Lesson learned: don’t use the key as an IV. Part of the fallacy in
the introduction is that it assumed secret data could be used for the IV,

CHAPTER 7. STREAM CIPHERS 59

because it only had to be unpredictable. That’s not true: ”secret” is just
a different requirement from ”not secret”, not necessarily a stronger one.
It is not generally okay to use secret information where it isn’t required,
precisely because if it’s not supposed to be secret, the algorithm may
very well treat it as non-secret, as is the case here. There are plenty of
systems where it is okay to use a secret where it isn’t required. In some
cases you might even get a stronger system as a result, but the point is
that it is not generally true, and depends on what you’re doing.

7.7 CBC bit flipping attacks

An interesting attack on CBC mode is called a bit flipping attack. Using
a CBC bit flipping attack, attackers can modify ciphertexts encrypted
in CBC mode so that it will have a predictable effect on the plaintext.

This may seem like a very strange definition of ”attack” at first. The
attacker will not even attempt to decrypt any messages, but they will
just be flipping some bits in a plaintext. We will demonstrate that the
attacker can turn the ability to flip some bits in the plaintext into the
ability to have the plaintext say whatever they want it to say, and, of
course, that can lead to very serious problems in real systems.

Suppose we have a CBC encrypted ciphertext. This could be, for
example, a cookie. We take a particular ciphertext block, and we flip
some bits in it. What happens to the plaintext?

When we ”flip some bits”, we do that by XORing with a sequence
of bits, which we’ll call X . If the corresponding bit in X is 1, the bit
will be flipped; otherwise, the bit will remain the same.

When we try to decrypt the ciphertext block with the flipped

CHAPTER 7. STREAM CIPHERS 60

Ci ⊕X Ci+1

k kD D

P ′
i Pi+1 ⊕X

. . .

. . .

bits, we will get indecipherable4 nonsense. Remember how CBC
decryption works: the output of the block cipher is XORed with the
previous ciphertext block to produce the plaintext block. Now that the
input ciphertext block Ci has been modified, the output of the block
cipher will be some random unrelated block, and, statistically speaking,
nonsense. After being XORed with that previous ciphertext block, it
will still be nonsense. As a result, the produced plaintext block is still
just nonsense. In the illustration, this unintelligible plaintext block is
P ′
i .

However, in the block after that, the bits we flipped in the cipher-
text will be flipped in the plaintext as well! This is because, in CBC
decryption, ciphertext blocks are decrypted by the block cipher, and
the result is XORed with the previous ciphertext block. But since we
modified the previous ciphertext block by XORing it with X , the plain-

4Excuse the pun.

CHAPTER 7. STREAM CIPHERS 61

text block Pi+1 will also be XORed with X . As a result, the attacker
completely controls that plaintext block Pi+1, since they can just flip
the bits that aren’t the value they want them to be.

TODO: add previous illustration, but mark the path X takes to
influence P prime {i + 1} in red or something

This may not sound like a huge deal at first. If you don’t know the
plaintext bytes of that next block, you have no idea which bits to flip in
order to get the plaintext you want.

To illustrate how attackers can turn this into a practical attack, let’s
consider a website using cookies. When you register, your chosen user
name is put into a cookie. The website encrypts the cookie and sends it
to your browser. The next time your browser visits the website, it will
provide the encrypted cookie; the website decrypts it and knows who
you are.

An attacker can often control at least part of the plaintext being
encrypted. In this example, the user name is part of the plaintext of the
cookie. Of course, the website just lets you provide whatever value for
the user name you want at registration, so the attacker can just add a
very long string of Z bytes to their user name. The server will happily
encrypt such a cookie, giving the attacker an encrypted ciphertext that
matches a plaintext with many such Z bytes in them. The plaintext
getting modified will then probably be part of that sequence of Z bytes.

An attacker may have some target bytes that they’d like to see in
the decrypted plaintext, for example, ;admin=1;. In order to figure out
which bytes they should flip (so, the value of X in the illustration),
they just XOR the filler bytes (ZZZ…) with that target. Because two
XOR operations with the same value cancel each other out, the two

CHAPTER 7. STREAM CIPHERS 62

filler values (ZZZ…) will cancel out, and the attacker can expect to see
;admin=1; pop up in the next plaintext block:

P ′
i+1 = Pi+1 ⊕X

= Pi+1 ⊕ ZZZZZZZZZ⊕ ; admin = 1;

= ZZZZZZZZZ⊕ ZZZZZZZZZ⊕ ; admin = 1;

= ; admin = 1;

This attack is another demonstration of an important cryptographic
principle: encryption is not authentication! It’s virtually never sufficient
to simply encrypt a message. It may prevent an attacker from reading it,
but that’s often not even necessary for the attacker to be able to modify
it to say whatever they want it to. This particular problem would be
solved by also securely authenticating the message. We’ll see how you
can do that later in the book; for now, just remember that we’re going
to need authentication in order to produce secure cryptosystems.

7.8 Padding

So far,we’ve conveniently assumed that all messages just happened to fit
exactly in our system of block ciphers, be it CBC or ECB.That means
that all messages happen to be a multiple of the block size, which, in a
typical block cipher such as AES, is 16 bytes. Of course, real messages
can be of arbitrary length. We need some scheme to make them fit.
That process is called padding.

CHAPTER 7. STREAM CIPHERS 63

Padding with zeroes (or some other pad byte)

One way to pad would be to simply append a particular byte value until
the plaintext is of the appropriate length. To undo the padding, you just
remove those bytes. This scheme has an obvious flaw: you can’t send
messages that end in that particular byte value, or you will be unable to
distinguish between padding and the actual message.

PKCS#5/PKCS#7 padding

A better, and much more popular scheme, is PKCS#5/PKCS#7 padding.
PKCS#5, PKCS#7 and later CMS padding are all more or less

the same idea5. Take the number of bytes you have to pad, and pad
them with that many times the byte with that value. For example, if
the block size is 8 bytes, and the last block has the three bytes 12 34

45, the block becomes 12 34 45 05 05 05 05 05 after padding.
If the plaintext happened to be exactly a multiple of the block size,

an entire block of padding is used. Otherwise, the recipient would look
at the last byte of the plaintext, treat it as a padding length, and almost
certainly conclude the message was improperly padded.

This scheme is described in [25].

7.9 CBC padding attacks

We can refine CBC bit flipping attacks to trick a recipient into decrypt-
ing arbitrary messages!

5Technically, PKCS#5 padding is only defined for 8 byte block sizes, but the idea
clearly generalizes easily, and it’s also the most commonly used term.

CHAPTER 7. STREAM CIPHERS 64

As we’ve just discussed, CBC mode requires padding the message
to a multiple of the block size. If the padding is incorrect, the recipient
typically rejects the message, saying that the padding was invalid. We
can use that tiny bit of information about the padding of the plaintext
to iteratively decrypt the entire message.

The attacker will do this, one ciphertext block at a time, by trying
to get an entire plaintext block worth of valid padding. We’ll see that
this tells them the decryption of their target ciphertext block, under
the block cipher. We’ll also see that you can do this efficiently and
iteratively, just from that little leak of information about the padding
being valid or not.

It may be helpful to keep in mind that a CBC padding attack does
not actually attack the padding for a given message; instead the attacker
will be constructing paddings to decrypt a message.

To mount this attack, an attacker only needs two things:

1. A target ciphertext to decrypt

2. A padding oracle: a function that takes ciphertexts and tells the
attacker if the padding was correct

As with the ECB encryption oracle, the availability of a padding
oracle may sound like a very unrealistic assumption. The massive impact
of this attack proves otherwise. For a long time, most systems did not
even attempt to hide if the padding was valid or not. This attack
remained dangerous for a long time after it was originally discovered,
because it turns out that in many systems it is extremely difficult to
actually hide if padding is valid or not. We will go into this problem in
more detail both in this chapter and in later chapters.

CHAPTER 7. STREAM CIPHERS 65

In this chapter, we’ll assume that PKCS#5/PKCS#7 padding is
being used, since that’s the most popular option. The attack is general
enough to work on other kinds of padding, with minor modifications.

Decrypting the first byte

The attacker fills a block with arbitrary bytes R = r1, r2 . . . rb. They
also pick a target blockCi from the ciphertext that they’d like to decrypt.
The attacker asks the padding oracle if the plaintext of R‖Ci has valid
padding. Statistically speaking, such a random plaintext probably won’t
have valid padding: the odds are in the half-a-percent ballpark. If by
pure chance the message happens to already have valid padding, the
attacker can simply skip the next step.

R = r1r2 . . . rb Ci

k kD D

PR Pi = p1p2 . . . pb

IV

Next, the attacker tries to modify the message so that it does have
valid padding. They can do that by indirectly modifying the last byte
of the plaintext: eventually that byte will be 01, which is always valid
padding. In order to modify the last byte of a plaintext block, the

CHAPTER 7. STREAM CIPHERS 66

attacker modifies the last byte of the previous ciphertext block. This
works exactly like it did with CBC bit flipping attacks. That previous
ciphertext block is the block R, so the byte being modified is the last
byte of R, rb.

The attacker tries all possible values for that last byte. There are
several ways of doing that: modular addition, XORing it with all values
up to 256, or even picking randomly; the only thing that matters is that
the attacker tries all of them. Eventually, the padding oracle will report
that for some ciphertext block R, the decrypted plaintext of R‖Ci has
valid padding.

Discovering the padding length

The oracle has just told the attacker that for our chosen value of R,
the plaintext of R‖Ci has valid padding. Since we’re working with
PKCS#5 padding, that means that the plaintext block Pi ends in one
of the following byte sequences:

• 01

• 02 02

• 03 03 03

• …

The first option (01) is much more likely than the others, since
it only requires one byte to have a particular value. The attacker is
modifying that byte to take every possible value, so it is quite likely
that they happened to stumble upon 01. All of the other valid padding

CHAPTER 7. STREAM CIPHERS 67

options not only require that byte to have some particular value, but also
one or more other bytes. For an attacker to be guaranteed a message
with a valid 01 padding, they just have to try every possible byte. For an
attacker to end up with a message with a valid 02 02 padding, they have
to try every possible byte and happen to have picked a combination of
C and R that causes the plaintext to have a 02 in that second-to-last
position. (To rephrase: the second-to-last byte of the decryption of the
ciphertext block, XORed with the second-to-last byte of R, is 02.)

In order to successfully decrypt the message, we still need to figure
out which one of those options is the actual value of the padding. To do
that, we try to discover the length of the padding by modifying bytes
starting at the left-hand side of Pi until the padding becomes invalid
again. As with everything else in this attack, we modify those bytes in
Pi by modifying the equivalent bytes in our chosen block R. As soon
as padding breaks, you know that the last byte you modified was part
of the valid padding, which tells you how many padding bytes there
are. Since we’re using PKCS#5 padding, that also tells you what their
value is.

Let’s illustrate this with an example. Suppose we’ve successfully
found some block R so that the plaintext of R‖Ci has valid padding.
Let’s say that padding is 03 03 03. Normally, the attacker wouldn’t
know this; the point of this procedure is to discover what that padding
is. Suppose the block size is 8 bytes. So, we (but not the attacker) know
that Pi is currently:

p0p1p2p3p4030303 (7.3)

In that equation, p0 . . . are some bytes of the plaintext. Their actual

CHAPTER 7. STREAM CIPHERS 68

value doesn’t matter: the only thing that matters is that they’re not
part of the padding. When we modify the first byte of R, we’ll cause a
change in the first byte of Pi, so that p0 becomes some other byte p′0:

p′0p1p2p3p4030303 (7.4)

As you can see, this doesn’t affect the validity of the padding. It also
does not affect p1, p2, p3 or p4. However, when we continue modifying
subsequent bytes,we will eventually hit a byte that is part of the padding.
For example, let’s say we turn that first 03 into 02 by modifying R. Pi

now looks like this:

p′0p
′
1p

′
2p

′
3p

′
4020303 (7.5)

Since 02 03 03 isn’t valid PKCS#5 padding, the server will reject
the message. At that point, we know that once we modify six bytes,
the padding breaks. That means the sixth byte is the first byte of the
padding. Since the block is 8 bytes long, we know that the padding
consists of the sixth, seventh and eighth bytes. So, the padding is three
bytes long, and, in PKCS#5, equal to 03 03 03.

For the next section, we’ll assume that it was just 01, since that is
the most common case. The attack doesn’t really change depending on
the length of the padding. If you guess more bytes of padding correctly,
that just means that there are fewer remaining bytes you will have to
guess manually. (This will become clear once you understand the rest
of the attack.)

CHAPTER 7. STREAM CIPHERS 69

Decrypting one byte

At this point, the attacker has already successfully decrypted the last
byte of the target block of ciphertext! Actually, we’ve decrypted as
many bytes as we have valid padding; we’re just assuming the worst case
scenario where there is only a single byte. How? The attacker knows
that the last byte of the decrypted ciphertext block Ci (we’ll call that
byte D(Ci)[b]), XORed with the iteratively found value rb, is 01:

D(Ci)[b]⊕ rb = 01

By moving the XOR operation to the other side, the attacker gets:

D(Ci)[b] = 01⊕ rb

The attacker has now tricked the receiver into revealing the value
of the last byte of the block cipher decryption of Ci.

Decrypting subsequent bytes

Next, the attacker tricks the receiver into decrypting the next byte.
Remember the previous equation, where we reasoned that the last byte
of the plaintext was 01:

D(Ci)[b]⊕ rb = 01

Now, we’d like to get that byte to say 02, to produce an almost valid
padding: the last byte would be correct for a 2-byte PKCS#5 padding
(02 02), but that second-to-last byte probably isn’t 02 yet. To do that,
we XOR with 01 to cancel the 01 that’s already there (since two XORs

CHAPTER 7. STREAM CIPHERS 70

with the same value cancel each other out), and then we XOR with 02

to get 02:

D(Ci)[b]⊕ rb ⊕ 01⊕ 02 = 01⊕ 01⊕ 02

= 02

The attacker uses that value for the last byte. Then, they try all
possible values for the second-to-last byte (index b − 1). Eventually,
one of them will cause the message to have valid padding. Since we
modified the random block so that the final byte of the plaintext will
be 02, the only byte in the second-to-last position that can cause valid
padding is 02 as well. Using the same math as above, the attacker has
recovered the second-to-last byte.

Then, it’s just rinse and repeat. The last two bytes are modified to
create an almost-valid padding of 03 03, then the third byte from the
right is modified until the padding is valid, and so on. Repeating this
for all the bytes in the block means the attacker can decrypt the entire
block; repeating it for different blocks means the attacker can read the
entire message.

This attack has proven to be very subtle and hard to fix. First
of all, messages should be authenticated, as well as encrypted. That
would cause modified messages to be rejected. However, many systems
decrypt (and remove padding) before authenticating the message; so the
information about the padding being valid or not has already leaked.
We will discuss secure ways of authenticating messages later in the
book.

You might consider just getting rid of the ”invalid padding”message;
declaring the message invalid without specifying why it was invalid.

CHAPTER 7. STREAM CIPHERS 71

That turns out to only be a partial solution for systems that decrypt be-
fore authenticating. Those systems would typically reject messages with
an invalid padding slightly faster than messages with a valid padding.
After all, they didn’t have to do the authentication step: if the padding
is invalid, the message can’t possibly be valid. An attack that leaks
secret information through timing differences is called a timing attack,
which is a special case of a side-channel attack: attacks on the practical
implementation of a cryptosystem rather than its ”perfect” abstract
representation. We will talk about these kinds of attacks more later in
the book.

That discrepancy was commonly exploited as well. By measuring
how long it takes the recipient to reject the message, the attacker can tell
if the recipient performed the authentication step. That tells them if the
padding was correct or not, providing the padding oracle to complete
the attack.

The principal lesson learned here is, again, not to design your own
cryptosystems. The main way to avoid this particular problem is by
performing constant time authentication, and authenticating the ci-
phertext before decrypting it. We will talk more about this in a later
chapter on message authentication.

7.10 Native stream ciphers

In addition to block ciphers being used in a particular mode of operation,
there are also ”native” stream ciphers algorithms that are designed from
the ground up to be a stream cipher.

The most common type of stream cipher is called a synchronous
stream cipher. These algorithms produce a long stream of pseudoran-

CHAPTER 7. STREAM CIPHERS 72

dom bits from a secret symmetric key. This stream, called the keystream,
is then XORed with the plaintext to produce the ciphertext. Decryption
is the identical operation as encryption, just repeated: the keystream is
produced from the key, and is XORed with the ciphertext to produce
the plaintext.

Pi Pi

k k

Ki Ki
Ci

C C

You can see how this construction looks quite similar to a one-time
pad, except that the truly random one-time pad has been replaced by a
pseudorandom stream cipher.

There are also asynchronous or self-synchronizing stream ciphers,
where the previously produced ciphertext bits are used to produce the
current keystream bit. This has the interesting consequence that a
receiver can eventually recover if some ciphertext bits are dropped. This
is generally not considered to be a desirable property anymore in modern
cryptosystems, which instead prefer to send complete, authenticated
messages. As a result, these stream ciphers are very rare, and we don’t
talk about them explicitly in this book. Whenever someone says ”stream
cipher”, it’s safe to assume they mean the synchronous kind.

Historically, native stream ciphers have had their issues. NESSIE,
an international competition for new cryptographic primitives, for
example, did not result in any new stream ciphers, because all of the

CHAPTER 7. STREAM CIPHERS 73

participants were broken before the competition ended. RC4, one of
the most popular native stream ciphers, has had serious known issues
for years. By comparison, some of the constructions using block ciphers
seem bulletproof.

Fortunately, more recently, several new cipher algorithms provide
new hope that we can get practical, secure and performant stream
ciphers.

7.11 RC4

By far the most common native stream cipher in common use on
desktop and mobile devices is RC4.

RC4 is sometimes also called ARCFOUR or ARC4, which stands
for alleged RC4. While its source code has been leaked and its im-
plementation is now well-known, RSA Security (the company that
authored RC4 and still holds the RC4 trademark) has never acknowl-
edged that it is the real algorithm.

It quickly became popular because it’s very simple and very fast.
It’s not just extremely simple to implement, it’s also extremely simple
to apply. Being a synchronous stream cipher, there’s little that can
go wrong; with a block cipher, you’d have to worry about things like
modes of operation and padding. Clocking in at around 13.9 cycles
per byte, it’s comparable to AES-128 in CTR (12.6 cycles per byte) or
CBC (16.0 cycles per byte) modes. AES came out a few years after
RC4; when RC4 was designed, the state of the art was 3DES, which
was excruciatingly slow by comparison (134.5 cycles per byte in CTR
mode). [17]

CHAPTER 7. STREAM CIPHERS 74

An in-depth look at RC4

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

On the other hand, RC4 is incredibly simple, and
it may be worth skimming this section.

RC4 is, unfortunately, quite broken. To better understand just how
broken, we’ll take a look at how RC4 works. The description requires
understanding modular addition; if you aren’t familiar with it, you may
want to review the appendix on modular addition.

Everything in RC4 revolves around a state array and two indexes
into that array. The array consists of 256 bytes forming a permutation:
that is, all possible index values occur exactly once as a value in the
array. That means it maps every possible byte value to every possible
byte value: usually different, but sometimes the same one. We know
that it’s a permutation because S starts as one, and all operations that
modify S always swap values, which obviously keeps it a permutation.

RC4 consists of two major components that work on two indexes
i, j and the state array S:

1. The key scheduling algorithm, which produces an initial state
array S for a given key.

2. The pseudorandom generator,which produces the actual keystream
bytes from the state array S which was produced by the key

CHAPTER 7. STREAM CIPHERS 75

scheduling algorithm. The pseudorandom generator itself modi-
fies the state array as it produces keystream bytes.

The key scheduling algorithm

The key scheduling algorithm starts with the identity permutation. That
means that each byte is mapped to itself.

0 1 2 3 . . . 254 255

0 1 2 3 . . . 254 255

Then, the key is mixed into the state. This is done by iterating over
every element of the state. The j index is found by adding the current
value of j (starting at 0) with the next byte of the key, and the current
state element:

j

Si

Ki

Sj

S

K

. . .

. . .

. . .

. . .

. . .

Once j has been found, S[i] and S[j] are swapped:

CHAPTER 7. STREAM CIPHERS 76

.

i j0 1 254 255

This process is repeated for all the elements of S. If you run out
of key bytes, you just wrap around on the key. This explains why RC4
accepts keys from anywhere between 1 and 256 bytes long. Usually,
128 bit (16 byte) keys are used, which means that each byte in the key
is used 16 times.

Or, in Python:

from itertools import cycle

def key_schedule(key):

s = range(256)

key_bytes = cycle(ord(x) for x in key)

j = 0

for i in xrange(256):

j = (j + s[i] + next(key_bytes)) % 256

s[i], s[j] = s[j], s[i]

return s

The pseudorandom generator

The pseudorandom generator is responsible for producing pseudoran-
dom bytes from the state S. These bytes form the keystream, and are

CHAPTER 7. STREAM CIPHERS 77

XORed with the plaintext to produce the ciphertext. For each index
i, it computes j = j + S[i] (j starts at 0). Then, S[i] and S[j] are
swapped:

.

i j0 1 254 255

To produce the output byte, S[i] and S[j] are added together. Their
sum is used as an index into S; the value at S[S[i] + S[j]] is the
keystream byte Ki:

.

0 1 j i Si + Sj 255

Ki

We can express this in Python:

def pseudorandom_generator(s):

j = 0

for i in cycle(range(256)):

j = (j + s[i]) % 256

s[i], s[j] = s[j], s[i]

k = (s[i] + s[j]) % 256

yield s[k]

CHAPTER 7. STREAM CIPHERS 78

Attacks

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

The section on the attacks on RC4 is a good deal
more complicated than RC4 itself, so you may want to skip this even if
you’ve read this far.

There are many attacks on RC4-using cryptosystems where RC4 isn’t
really the issue, but are caused by things like key reuse or failing to
authenticate the message. We won’t discuss these in this section. Right
now, we’re only talking about issues specific to the RC4 algorithm itself.

Intuitively, we can understand how an ideal stream cipher would
produce a stream of random bits. After all, if that’s what it did, we’d
end up in a situation quite similar to that of a one-time pad.

Pi

ki ki

Ci Pi

Figure 7.2: A one-time pad scheme.

The stream cipher is ideal if the best way we have to attack it is to
try all of the keys, a process called brute-forcing the key. If there’s an
easier way, such as through a bias in the output bytes, that’s a flaw of
the stream cipher.

Throughout the history of RC4, people have found many such
biases. In the mid-nineties, Andrew Roos noticed two such flaws:

CHAPTER 7. STREAM CIPHERS 79

Pi Pi

k k

Ki Ki
Ci

C C

Figure 7.3: A synchronous stream cipher scheme. Note similarity to the
one-time pad scheme. The critical difference is that while the one-time
pad ki is truly random, the keystream Ki is only pseudorandom.

• The first three bytes of the key are correlated with the first byte
of the keystream.

• The first few bytes of the state are related to the key with a simple
(linear) relation.

For an ideal stream cipher, the first byte of the keystream should
tell me nothing about the key. In RC4, it gives me some information
about the first three bytes of the key. The latter seems less serious: after
all, the attacker isn’t supposed to know the state of the cipher.

As always, attacks never get worse. They only get better.
Adi Shamir and Itsik Mantin showed that the second byte pro-

duced by the cipher is twice as likely to be zero as it should be. Other
researchers showed similar biases in the first few bytes of the keystream.
This sparked further research by Mantin, Shamir and Fluhrer, showing
large biases in the first bytes of the keystream. [21] They also showed
that knowing even small parts of the key would allow attackers to make
strong predictions about the state and outputs of the cipher.

CHAPTER 7. STREAM CIPHERS 80

Unlike RC4, most modern stream ciphers provide a way to com-
bine a long-term key with a nonce (a number used once), to produce
multiple different keystreams from the same long-term key. RC4,
by itself, doesn’t do that. The most common approach was also the
simplest: concatenate6 the long-term key k with the nonce n: k‖n,
taking advantage of RC4’s flexible key length requirements. In this
context, concatenation means the bits of n are appended to the bits of
k. This scheme meant attackers could recover parts of the combined
key, eventually allowing them to slowly recover the long-term key from
a large amount of messages (around 224 to 226, or tens of millions of
messages).

WEP, a standard for protecting wireless networks that was popular
at the time, was heavily affected by this attack, because it used this
simplistic nonce combination scheme. A scheme where the long-term
key and the nonce had been securely combined (for example using
a key derivation function or a cryptographic hash function) wouldn’t
have had this weakness. Many other standards including TLS were
therefore not affected.

Again, attacks only get better. Andreas Klein showed more exten-
sive correlation between the key and the keystream. [28] Instead of
tens of millions of messages with the Fluhrer, Mantin, Shamir attacks,
attackers now only needed several tens of thousands of messages to
make the attack practical. This was applied against WEP with great
effect.

In 2013, a team of researchers at Royal Holloway in London pro-
6Here we use ‖ as the operator for concatenation. Other common symbols for

concatenation include + (for some programming languages, such as Python) and ·
(for formal languages).

CHAPTER 7. STREAM CIPHERS 81

duced a combination of two independent practical attacks. [3] These
attacks proved to be very damning for RC4: while RC4’s weaknesses
had been known for a long time, they finally drove the point home for
everyone that it really shouldn’t be used anymore.

The first attack is based on single-byte biases in the first 256 bytes
of the keystream. By performing statistical analysis on the keystreams
produced by a large number of keys, they were able to analyze the
already well-known biases in the early keystream bytes of RC4 in much
greater detail.

TODO: illustrate: http://www.isg.rhul.ac.uk/tls/RC4_keystream_
dist_2_45.txt

The second attack is based on double byte biases anywhere in the
keystream. It turns out that adjacent bytes of the keystream have an
exploitable relation, whereas in an ideal stream cipher you would expect
them to be completely independent.

http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt
http://www.isg.rhul.ac.uk/tls/RC4_keystream_dist_2_45.txt

CHAPTER 7. STREAM CIPHERS 82

Byte pair Byte position (mod 256) i Probability
(0, 0) i = 1 2−16(1 + 2−9)

(0, 0) i 6∈ {1, 255} 2−16(1 + 2−8)

(0, 1) i 6∈ {0, 1} 2−16(1 + 2−8)

(0, i+ 1) i 6∈ {0, 255} 2−16(1 + 2−8)

(i+ 1, 255) i 6= 254 2−16(1 + 2−8)

(255, i+ 1) i 6∈ {1, 254} 2−16(1 + 2−8)

(255, i+ 2) i 6∈ {0, 253, 254, 255} 2−16(1 + 2−8)

(255, 0) i = 254 2−16(1 + 2−8)

(255, 1) i = 255 2−16(1 + 2−8)

(255, 2) i ∈ {0, 1} 2−16(1 + 2−8)

(255, 255) i 6= 254 2−16(1 + 2−8)

(129, 129) i = 2 2−16(1 + 2−8)

This table may seem a bit daunting at first. The probability expres-
sion in the rightmost column may look a bit complex, but there’s a
reason it’s expressed that way. Suppose that RC4 was a good stream
cipher, and all values occurred with equal probability. Then you’d expect
the probability for any given byte value to be 2−8 since there are 28

different byte values. If RC4 was a good stream cipher, two adjacent
bytes would each have probability 2−8, so any given pair of two bytes
would have probability 2−8 · 2−8 = 2−16. However, RC4 isn’t an ideal
stream cipher, so these properties aren’t true. By writing the probability
in the 2−16(1 + 2−k) form, it’s easier to see how much RC4 deviates
from what you’d expect from an ideal stream cipher.

So, let’s try to read the first line of the table. It says that when the
first byte i = 1 of any 256-byte chunk from the cipher is 0, then the
byte following it is slightly more likely (1 + 2−9 times as likely, to be

CHAPTER 7. STREAM CIPHERS 83

exact) to be 0 than for it to be any other number. We can also see that
when one of the keystream bytes is 255, you can make many predictions
about the next byte, depending on where it occurs in the keystream.
It’s more likely to be 0, 1, 2, 255, or the position in the keystream plus
one or two.

TODO: demonstrate attack success
Again, attacks only get better. These attacks have primarily focused

on the cipher itself, and haven’t been fully optimized for practical attacks
on, say, web services. The attacks can be greatly improved with some
extra information about the plaintext you’re attempting to recover. For
example, HTTP cookies are often base-64 or hex encoded.

There’s no way around it: we need to stop using RC4. Fortunately,
we’ve also developed many secure alternatives. The continuing advances
in cryptanalysis of RC4 helped contribute to a sense of urgency regard-
ing the improvement of commonly available cryptographic primitives.
Throughout 2013 in particular, this lead to large improvements in, for
example, browser cryptography (We will discuss browser cryptography,
notably SSL/TLS, in a later chapter).

7.12 Salsa20

Salsa20 is a newer stream cipher designed by Dan Bernstein. Bernstein
is well-known for writing a lot of open source (public domain) software,
most of which is either directly security related or built with information
security very much in mind.

There are two minor variants of Salsa20, called Salsa20/12 and
Salsa20/8, which are simply the same algorithm except with 12 and 8

CHAPTER 7. STREAM CIPHERS 84

rounds7 respectively, down from the original 20. ChaCha is another,
orthogonal tweak of the Salsa20 cipher, which tries to increase the
amount of diffusion per round while maintaining or improving perfor-
mance. ChaCha doesn’t have a ”20” after it; specific algorithms do have
a number after them (ChaCha8, ChaCha12, ChaCha20), which refers
to the number of rounds.

Salsa20 and ChaCha are among the state of the art of modern
stream ciphers. There are currently no publicly known attacks against
Salsa20,ChaCha,nor against any of their recommended reduced-round
variants, that break their practical security.

Both cipher families are also pretty fast. For long streams, Salsa20
takes about 4 cycles per byte for the full-round version, about 3 cycles
per byte for the 12-round version and about 2 cycles per byte for the
8-round version, on modern Intel processors [8] and modern AMD
processors [17]. ChaCha is (on most platforms) slightly faster still.
To put that into comparison, that’s more than three times faster than
RC48, approximately three times faster than AES-CTR with a 128 bit
key at 12.6 cycles per byte, and roughly in the ballpark of AES GCM
mode9 with specialized hardware instructions.

Salsa20 has two particularly interesting properties. Firstly, It’s pos-
sible to ”jump”to a particular point in the keystream without computing
all previous bits. This can be useful, for example, if a large file is en-

7Rounds are repetitions of an internal function. Typically a number of rounds are
required to make an algorithm work effectively; attacks often start on reduced-round
versions of an algorithm.

8The quoted benchmarks don’t mention RC4 but MARC4, which stands for
”modified alleged RC4”. The RC4 section explains why it’s ”alleged”, and ”modified”
means it throws away the first 256 bytes because of a weakness in RC4.

9GCM mode is an authenticated encryption mode, which we will see in more
detail in a later chapter.

CHAPTER 7. STREAM CIPHERS 85

crypted, and you’d like to be able to do random reads in the middle
of the file. While many encryption schemes require the entire file to
be decrypted, with Salsa20, you can just select the portion you need.
Another construction that has this property is a mode of operation
called CTR mode, which we’ll talk about later.

This ability to ”jump” also means that blocks from Salsa20 can be
computed independently of one another, allowing for encryption or
decryption to work in parallel, which can increase performance on
multi-core CPUs.

Secondly, it is resistant to many side-channel attacks. This is done
by ensuring that no key material is ever used to choose between dif-
ferent code paths in the cipher, and that every round is made up of a
fixed-number of constant-time operations. The result is that every block
is produced with exactly the same number of operations, regardless of
what the key is.

7.13 Native stream ciphers versus modes of
operation

Some texts only consider native stream ciphers to be stream ciphers.
This book emphasizes what the functionality of the algorithm is. Since
both block ciphers in a mode of operation and a native stream cipher
take a secret key and can be used to encrypt a stream, and the two can
usually replace each other in a cryptosystem, we just call both of them
stream ciphers and are done with it.

We will further emphasize the tight link between the two with
CTR mode, a mode of operation which produces a synchronous stream

CHAPTER 7. STREAM CIPHERS 86

cipher. While there are also modes of operation (like OFB and CFB)
that can produce self-synchronizing stream ciphers, these are far less
common, and not discussed here.

7.14 CTR mode

CTR mode, short for counter mode, is a mode of operation that works
by concatenating a nonce with a counter. The counter is incremented
with each block, and padded with zeroes so that the whole is as long as
the block size. The resulting concatenated string is run through a block
cipher. The outputs of the block cipher are then used as the keystream.

N‖00 . . . ‖i E

k Pi

Ci

Figure 7.4: CTR mode: a single nonce N with a zero-padded counter
i is encrypted by the block cipher to produce a keystream block; this
block is XORed with the plaintext block Pi to produce the ciphertext
block Ci.

This illustration shows a single input block N‖00 . . . ‖i, consisting
of nonce N , current counter value i and padding, being encrypted by
the block cipher E using key k to produce keystream block Si, which
is then XORed with the plaintext block Pi to produce ciphertext block
Ci.

CHAPTER 7. STREAM CIPHERS 87

Obviously, to decrypt, you do the exact same thing again, since
XORing a bit with the same value twice always produces the original
bit: pi ⊕ si ⊕ si = pi. As a consequence, CTR encryption and
decryption is the same thing: in both cases you produce the keystream,
and you XOR either the plaintext or the ciphertext with it in order to
get the other one.

For CTR mode to be secure, it is critical that nonces aren’t reused.
If they are, the entire keystream will be repeated, allowing an attacker
to mount multi-time pad attacks.

This is different from an initialization vector such as the one used
by CBC. An IV has to be unpredictable. An attacker being able to
predict a CTR nonce doesn’t really matter: without the secret key, he
has no idea what the output of the block cipher (the sequence in the
keystream) would be.

Like Salsa20, CTR mode has the interesting property that you can
jump to any point in the keystream easily: just increment the counter
to that point. The Salsa20 paragraph on this topic explains why that
might be useful.

Another interesting property is that since any keystream block can
be computed completely separately from any other keystream block,
both encryption and decryption are very easy to compute in parallel.

7.15 Stream cipher bit flipping attacks

Synchronous stream ciphers, such as native stream ciphers or a block
cipher in CTR mode, are also vulnerable to a bit flipping attack. It’s
similar to CBC bit flipping attacks in the sense that an attacker flips

CHAPTER 7. STREAM CIPHERS 88

several bits in the ciphertext, and that causes some bits to be flipped in
the plaintext.

This attack is actually much simpler to perform on stream ciphers
than it is on CBC mode. First of all, a flipped bit in the ciphertext results
in the same bit being flipped in the plaintext, not the corresponding
bit in the following block. Additionally, it only affects that bit; in CBC
bit flipping attacks, the plaintext of the modified block is scrambled.
Finally, since the attacker is modifying a sequence of bytes and not a
sequence of blocks, the attacks are not limited by the specific block size.
In CBC bit flipping attacks, for example, an attacker can adjust a single
block, but can’t adjust the adjacent block.

TODO illustrate
This is yet another example of why authentication has to go hand

in hand with encryption. If the message is properly authenticated, the
recipient can simply reject the modified messages, and the attack is
foiled.

7.16 Authenticating modes of operation

There are other modes of operation that provide authentication as well
as encryption at the same time. Since we haven’t discussed authentica-
tion at all yet, we’ll handle these later.

7.17 Remaining problems

We now have tools that will encrypt large streams of data using a small
key. However, we haven’t actually discussed how we’re going to agree
on that key. As noted in a previous chapter, to communicate between n

CHAPTER 7. STREAM CIPHERS 89

people, we need n(n−1)
2 key exchanges. The number of key exchanges

grows about as fast as the number of people squared. While the key to
be exchanged is a lot smaller now than it was with one-time pads, the
fundamental problem of the impossibly large number of key exchanges
hasn’t been solved yet. We will tackle that problem in the next section,
where we’ll look at key exchange protocols: protocols that allow us to
agree on a secret key over an insecure medium.

Additionally, we’ve seen that encryption isn’t enough to provide
security: without authentication, it’s easy for attackers to modify the
message, and in many flawed systems even decrypt messages. In a
future chapter, we’ll discuss how to authenticate messages, to prevent
attackers from modifying them.

8

Key exchange

8.1 Description

Key exchange protocols attempt to solve a problem that, at first glance,
seems impossible. Alice and Bob, who’ve never met before, have to
agree on a secret value. The channel they use to communicate is insecure:
we’re assuming that everything they send across the channel is being
eavesdropped on.

We’ll demonstrate such a protocol here. Alice and Bob will end up
having a shared secret, only communicating over the insecure channel.
Despite Eve having literally all of the information Alice and Bob send
to each other, she can’t use any of that information to figure out their
shared secret.

That protocol is called Diffie-Hellman, named after Whitfield
Diffie and Martin Hellman, the two cryptographic pioneers who dis-

90

CHAPTER 8. KEY EXCHANGE 91

covered it. They suggested calling the protocol Diffie-Hellman-Merkle
key exchange, to honor the contributions of Ralph Merkle. While his
contributions certainly deserve honoring, that term hasn’t really caught
on. For the benefit of the reader we’ll use the more common term.

Practical implementations of Diffie-Hellman rely on mathematical
problems that are believed to be very complex to solve in the ”wrong”
direction, but easy to compute in the ”right” direction. Understanding
the mathematical implementation isn’t necessary to understand the
principle behind the protocol. Most people also find it a lot easier to
understand without the mathematical complexity. So, we’ll explain
Diffie-Hellman in the abstract first, without any mathematical con-
structs. Afterwards, we’ll look at two practical implementations.

8.2 Abstract Diffie-Hellman

In order to describe Diffie-Hellman, we’ll use an analogy based on
mixing colors. We can mix colors according to the following rules:

• It’s very easy to mix two colors into a third color.

• Mixing two or more colors in different order results in the same
color.

• Mixing colors is one-way. It’s impossible to determine if, let
alone which, multiple colors were used to produce a given color.
Even if you know it was mixed, and even if you know some of the
colors used to produce it, you have no idea what the remaining
color(s) were.

CHAPTER 8. KEY EXCHANGE 92

We’ll demonstrate that with a mixing function like this one, we
can produce a secret color only known by Alice and Bob. Later, we’ll
simply have to describe the concrete implementation of those functions
to get a concrete key exchange scheme.

To illustrate why this remains secure in the face of eavesdroppers,
we’ll walk through an entire exchange with Eve, the eavesdropper, in the
middle. Eve is listening to all of the messages sent across the network.
We’ll keep track of everything she knows and what she can compute,
and end up seeing why Eve can’t compute Alice and Bob’s shared secret.

To start the protocol, Alice and Bob have to agree on a base color.
They can communicate that across the network: it’s okay if Eve in-
tercepts the message and finds out what the color is. Typically, this
base color is a fixed part of the protocol; Alice and Bob don’t need to
communicate it. After this step, Alice, Bob and Eve all have the same
information: the base color.

Alice and Bob both pick a random color, and they mix it with the
base color.

At the end of this step, Alice and Bob know their respective secret
color, the mix of the secret color and the base color, and the base color

CHAPTER 8. KEY EXCHANGE 93

itself. Everyone, including Eve, knows the base color.

Then, Alice and Bob both send their mixed colors over the network.
Eve sees both mixed colors, but she can’t figure out what either of Alice
and Bob’s secret colors are. Even though she knows the base, she can’t
”un-mix” the colors sent over the network.1

1While this might seem like an easy operation with black-and-white approxima-
tions of color mixing, keep in mind that this is just a failure of the illustration: our
assumption was that this was hard.

CHAPTER 8. KEY EXCHANGE 94

At the end of this step,Alice and Bob know the base, their respective
secrets, their respective mixed colors, and each other’s mixed colors.
Eve knows the base color and both mixed colors.

Once Alice and Bob receive each other’s mixed color, they add their
own secret color to it. Since the order of the mixing doesn’t matter,
they’ll both end up with the same secret.

Eve can’t perform that computation. She could finish the computa-
tion with either Alice or Bob’s secret color, since she has both mixed

CHAPTER 8. KEY EXCHANGE 95

colors, but she has neither of those secret colors. She can also try to mix
the two mixed colors, which would have both Alice and Bob’s secret
colors mixed into them. However, that would have the base color in
it twice, resulting in a different color than the shared secret color that
Alice and Bob computed, which only has the base color in it once.

8.3 Diffie-Hellman with discrete logarithms

This section describes a practical implementation of the Diffie-Hellman
algorithm, based on the discrete logarithm problem. It is intended to
provide some mathematical background, and requires modular arith-
metic to understand. If you are unfamiliar with modular arithmetic, you
can either skip this chapter, or first read the mathematical background
appendix.

Discrete log Diffie-Hellman is based on the idea that computing y

in the following equation is easy (at least for a computer):

y ≡ gx (mod p) (8.1)

However, computing x given y, g and p is believed to be very
hard. This is called the discrete logarithm problem, because a similar
operation without the modular arithmetic is called a logarithm.

This is just a concrete implementation of the abstract Diffie-Hellman
process we discussed earlier. The common base color is a large prime
p and the base g. The ”color mixing” operation is the equation given
above, where x is the input value and y is the resulting mixed value.

CHAPTER 8. KEY EXCHANGE 96

When Alice or Bob select their random numbers rA and rB , they
mix them with the base to produce the mixed numbers mA and mB :

mA ≡ grA (mod p) (8.2)

mB ≡ grB (mod p) (8.3)

These numbers are sent across the network where Eve can see them.
The premise of the discrete logarithm problem is that it is okay to do
so, because figuring out r in m ≡ gr (mod p) is supposedly very hard.

Once Alice and Bob have each other’s mixed numbers, they add
their own secret number to it. For example, Bob would compute:

s ≡ (grA)rB (mod p) (8.4)

While Alice’s computation looks different, they get the same result,
because (grA)rB ≡ (grB)rA (mod p). This is the shared secret.

Because Eve doesn’t have rA or rB , she can not perform the equiva-
lent computation: she only has the base number g and mixed numbers
mA ≡ grA (mod p) and mB ≡ grB (mod p) , which are useless to
her. She needs either rA or rB (or both) to make the computation
Alice and Bob do.

TODO: Say something about active MITM attacks where the
attacker picks smooth values to produce weak secrets?

8.4 Diffie-Hellman with elliptic curves

This section describes a practical implementation of the Diffie-Hellman
algorithm, based on the elliptic curve discrete logarithm problem. It

CHAPTER 8. KEY EXCHANGE 97

is intended to provide some mathematical background, and requires
a (very basic) understanding of the mathematics behind elliptic curve
cryptography. If you are unfamiliar with elliptic curves, you can either
skip this chapter, or first read the mathematical background appendix.

One of the benefits of the elliptic curve Diffie-Hellman variant is
that the required key size is much, much smaller than the variant based
on the discrete log problem. This is because the fastest algorithms for
breaking the discrete log problem have a larger asymptotic complexity
than their elliptic curve variants. For example, the number field sieve
for discrete logarithms, a state of the art algorithm for attacking discrete
logarithm-based Diffie-Hellman, has time complexity:

L
[
1/3, 3

√
64/9

]
Which is more than polynomial (but less than exponential) in

the number of digits. On the other hand, the fastest algorithms that
could be used to break the elliptic curve discrete log problem all have
complexity:

L [1, 1/2] = O(
√
n)

Relatively speaking, that means that it’s much harder to solve the
elliptic curve problem than it is to solve the regular discrete log problem,
using state of the art algorithms for both. The flip side of that is that
for equivalent security levels, the elliptic curve algorithm needs much
smaller key sizes[32][26]2:

2These figures are actually for the RSA problem versus the equivalent elliptic curve
problem, but their security levels are sufficiently close to give you an idea.

CHAPTER 8. KEY EXCHANGE 98

Security level in bits Discrete log key bits Elliptic curve key bits
56 512 112
80 1024 160

112 2048 224
128 3072 256
256 15360 512

8.5 Remaining problems

Using Diffie-Hellman,we can agree on shared secrets across an insecure
Internet, safe from eavesdroppers. However, while an attacker may not
be able to simply get the secret from eavesdropping, an active attacker
can still break the system. If such an attacker, usually called Mallory, is
in between Alice and Bob, she can still perform the Diffie-Hellman
protocol twice: once with Alice, where Mallory pretends to be Bob,
and once with Bob, where Mallory pretends to be Alice.

There are two shared secrets here: one between Alice and Mallory,
and one between Mallory and Bob. The attacker (Mallory) can then
simply take all the messages they get from one person and send them
to the other, they can look at the plaintext messages, remove messages,
and they can also modify them in any way they choose.

To make matters worse, even if one of the two participants was
somehow aware that this was going on, they would have no way to

CHAPTER 8. KEY EXCHANGE 99

get the other party to believe them. After all: Mallory performed the
successful Diffie-Hellman exchange with the unwitting victim, she has
all the correct shared secrets. Bob has no shared secrets with Alice, just
with Mallory; there’s no way for him to prove that he’s the legitimate
participant. As far as Alice can tell, Bob just chose a few random
numbers. There’s no way to link any key that Bob has with any key that
Alice has.

Attacks like these are called man-in-the-middle (MITM) attacks,
because the attacker (Mallory) is in between the two peers (Alice and
Bob). Given that the network infrastructure that we typically use to
send messages is run by many different operators, this kind of attack
scenario is very realistic, and a secure cryptosystem will have to address
them somehow.

While the Diffie-Hellman protocol successfully produced a shared
secret between two peers, there’s clearly some pieces of the puzzle
still missing to build those cryptosystems. We need tools that help us
authenticate Alice to Bob and vice versa, and we need tools that help
guarantee message integrity, allowing the receiver to verify that the
received messages are in fact the messages the sender intended to send.

9

Public-key encryption

9.1 Description

So far, we have only done secret-key encryption. Suppose, that you
could have a cryptosystem that didn’t involve a single secret key, but
instead had a key pair: one public key, which you freely distribute, and
a private one, which you keep to yourself.

People can encrypt information intended for you by using your
public key. The information is then impossible to decipher without
your private key. This is called public-key encryption.

For a long time, people thought this was impossible. However,
starting in the 1970s, such algorithms started appearing. The first pub-
licly available encryption scheme was produced by three cryptographers
from MIT: Ron Rivest, Adi Shamir and Leonard Adleman. The algo-

100

CHAPTER 9. PUBLIC-KEY ENCRYPTION 101

rithm they published is still the most common one today, and carries
the first letters of their last names: RSA.

Public-key algorithms aren’t limited to encryption. In fact, you’ve
already seen a public-key algorithm in this book that isn’t directly used
for encryption. There are actually three related classes of public-key
algorithms:

1. Key exchange algorithms, such as Diffie-Hellman, which allow
you to agree on a shared secret across an insecure medium.

2. Encryption algorithms, such as the ones we’ll discuss in this
chapter, which allow people to encrypt without having to agree
on a shared secret.

3. Signature algorithms,which we’ll discuss in a later chapter,which
allow you to sign any piece of information using your private
key in a way that allows anyone else to easily verify it using your
public key.

9.2 Why not use public-key encryption for
everything?

At face value, it seems that public-key encryption algorithms obsolete
all our previous secret-key encryption algorithms. We could just use
public key encryption for everything, avoiding all the added complexity
of having to do key agreement for our symmetric algorithms. However,
when we look at practical cryptosystems, we see that they’re almost
always hybrid cryptosystems: while public-key algorithms play a very

CHAPTER 9. PUBLIC-KEY ENCRYPTION 102

important role, the bulk of the encryption and authentication work is
done by secret-key algorithms.

By far the most important reason for this is performance. Com-
pared to our speedy stream ciphers (native or otherwise), public-key
encryption mechanisms are extremely slow. RSA is limited to at most
its key size, which for 2048-bit means 256 bytes. Under these cir-
cumstances encryption takes 0.29 megacycles, and decryption takes a
whopping 11.12 megacycles. [17] To put this into perspective, sym-
metric key algorithms work within an order of magnitude of 10 or so
cycles per byte in either direction. This means it will take a symmetric
key algorithm approximately 3 kilocycles in order to decrypt 256 bytes,
which is about 4000 times faster than the asymmetric version. The state
of the art in secure symmetric ciphers is even faster: AES-GCM with
hardware acceleration or Salsa20/ChaCha20 only need about 2 to 4
cycles per byte, further widening the performance gap.

There are a few other problems with most practical cryptosystems.
For example, RSA can’t encrypt anything larger than its modulus,which
is generally less than or equal 4096 bits, far smaller than the largest
messages we’d like to send. Still, the most important reason is the speed
argument given above.

9.3 RSA

As we already mentioned, RSA is one of the first practical public-key
encryption schemes. It remains the most common one to this day.

CHAPTER 9. PUBLIC-KEY ENCRYPTION 103

Encryption and decryption

RSA encryption and decryption relies on modular arithmetic. You may
want to review the modular arithmetic primer before continuing.

This section describes the simplified math problem behind RSA,
commonly referred to as ”textbook RSA”. By itself, this doesn’t produce
a secure encryption scheme. We’ll see a secure construction called
OAEP that builds on top of it in a later section.

In order to generate a key, you pick two large prime numbers p and q.
These numbers have to be picked at random, and in secret. You multiply
them together to produce the modulus N , which is public. Then, you
pick an encryption exponent e, which is also public. Usually, this value is
either 3 or 65537. Because those numbers have a small number of 1’s
in their binary expansion, you can compute the exponentiation more
efficiently. Put together, (N, e) is the public key. Anyone can use the
public key to encrypt a message M into a ciphertext C:

C ≡ M e (mod N)

The next problem is decryption. It turns out that there is a value
d, the decryption exponent, that can turn C back into M . That value is
fairly easy to compute assuming that you know p and q, which we do.
Using d, you can decrypt the message like so:

M ≡ Cd (mod N)

The security of RSA relies on that decryption operation being
impossible without knowing the secret exponent d, and that the secret
exponent d is very hard (practically impossible) to compute from the

CHAPTER 9. PUBLIC-KEY ENCRYPTION 104

public key (N, e). We’ll see approaches for breaking RSA in the next
section.

Breaking RSA

Like many cryptosystems, RSA relies on the presumed difficulty of a
particular mathematical problem. For RSA, this is the RSA problem,
specifically: to find the plaintext message M , given a ciphertext C, and
public key (N, e) in the equation:

C ≡ M e (mod N) (9.1)

The easiest way we know how to do that is to factor N back into
p · q. Given p and q, the attacker can just repeat the process that the
legitimate owner of the key does during key generation in order to
compute the private exponent d.

Fortunately, we don’t have an algorithm that can factor such large
numbers in reasonable time. Unfortunately, we also haven’t proven
it doesn’t exist. Even more unfortunate is that there is a theoretical
algorithm, called Shor’s algorithm, that would be able to factor such
a number in reasonable time on a quantum computer. Right now,
quantum computers are far from practical, but it does appear that if
someone in the future manages to build one that’s sufficiently large,
RSA becomes ineffective.

In this section, we have only considered a private key recovery
attack that attacks the purely abstract mathematical RSA problem by
factoring the modulus. In the next section, we will see all sorts of
realistic attacks on RSA that rely on flaws in the implementation, rather
than the mathematical problem stated above.

CHAPTER 9. PUBLIC-KEY ENCRYPTION 105

Implementation pitfalls

Right now, there are no known practical complete breaks against RSA.
That’s not to say that systems employing RSA aren’t routinely broken.
Like with most broken cryptosystems, there’s plenty of cases where
sound components, improperly applied, result in a useless system. For
a more complete overview of the things that can go wrong with RSA
implementations, please refer to [13] and [4]. In this book, we’ll just
highlight a few interesting ones.

PKCSv1.5 padding

Salt

Salt1 is a provisioning system written in Python. It has one major flaw:
it has a module named crypt. Instead of reusing existing complete
cryptosystems, it implements its own, using RSA and AES provided
by a third party package.

For a long time, Salt used a public exponent (e) of 1, which meant
the encryption phase didn’t actually do anything: P e ≡ P 1 ≡ P

(mod N). This meant that the resulting ciphertext was in fact just the
plaintext. While this issue has now been fixed, this only goes to show
that you probably shouldn’t implement your own cryptography. Salt
currently also supports SSH as a transport, but the aforementioned
DIY RSA/AES system remains, and is at time of writing still the
recommended and the default transport.

1So, there’s Salt the provisioning system, salts the things used in broken password
stores, NaCl pronounced ”salt” the cryptography library, and NaCl which runs native
code in some browsers, and probably a bunch I’m forgetting. Can we stop naming
things after it?

CHAPTER 9. PUBLIC-KEY ENCRYPTION 106

OAEP

OAEP, short for optimal asymmetric encryption padding, is the state
of the art in RSA padding. It was introduced by Mihir Bellare and
Phillip Rogaway in 1995. [7]. Its structure looks like this:

M 0 . . . R

(n− k − p) (p) (k)

(n− k)

G

(n− k)← (k)

H

(n− k)→ (k)

X Y

(n− k) (k)

The thing that eventually gets encrypted is X‖Y , which is n bits
long, where n is the number of bits of N , the RSA modulus. It takes a
random block R that’s k bits long, where k is a constant specified by
the standard. The message is first padded with zeroes to be n− k bits
long. If you look at the above ”ladder”, everything on the left half is
n − k bits long, and everything on the right half is k bits long. The
random block R and zero-padded message M‖000 . . . are combined

CHAPTER 9. PUBLIC-KEY ENCRYPTION 107

using two ”trapdoor” functions, G and H . A trapdoor function is a
function that’s very easy to compute in one direction and very hard to
reverse. In practice, these are cryptographic hash functions; we’ll see
more about those later.

As you can tell from the diagram, G takes k bits and turns them
into n− k bits, and H is the other way around, taking n− k bits and
turning them into k bits.

The resulting blocks X and Y are concatenated, and the result is
encrypted using the standard RSA encryption primitive, to produce
the ciphertext.

To see how decryption works, we reverse all the steps. The recipient
gets X‖Y when decrypting the message. They know k, since it is a
fixed parameter of the protocol, so they can split up X‖Y into X (the
first n− k bits) and Y (the final k bits).

In the previous diagram, the directions are for padding being ap-
plied. Reverse the arrows on the side of the ladder, and you can see
how to revert the padding:

TODO: reverse arrows
We want to get to M , which is in M‖000 There’s only one way

to compute that, which is:

M‖000 . . . = X ⊕G(R)

Computing G(R) is a little harder:

G(R) = H(X)⊕ Y

As you can see, at least for some definitions of the functions H
and G, we need all of X and all of Y (and hence the entire encrypted

CHAPTER 9. PUBLIC-KEY ENCRYPTION 108

message) in order to learn anything about M . There are many functions
that would be a good choice for H and G; based on cryptographic hash
functions, which we’ll discuss in more detail later in the book.

9.4 Elliptic curve cryptography

TODO: This

9.5 Remaining problem: unauthenticated
encryption

Most public-key encryption schemes can only encrypt small chunks
of data at a time, much smaller than the messages we want to be
able to send. They are also generally quite slow, much slower than their
symmetric counterparts. Therefore public-key cryptosystems are almost
always used in conjunction with secret-key cryptosystems.

When we discussed stream ciphers, one of the remaining issues
that we were facing was that we still had to exchange secret keys with a
large number of people. With public-key cryptosystems such as public
encryption and key exchange protocols, we’ve now seen two ways that
we can solve that problem. That means that we can now communicate
with anyone, using only public information, completely secure from
eavesdroppers.

So far we’ve only been talking about encryption without any form
of authentication. That means that while we can encrypt and decrypt
messages, we cannot verify that the message is what the sender actually
sent.

CHAPTER 9. PUBLIC-KEY ENCRYPTION 109

While unauthenticated encryption may provide secrecy, we have
already seen that without authentication an active attacker can generally
modify valid encrypted messages successfully, despite the fact that they
don’t necessarily know the corresponding plaintext. Accepting these
messages can often lead to secret information being leaked, meaning
we don’t even get secrecy. The CBC padding attacks we’ve already
discussed illustrate this.

As a result it has become evident that we need ways to authenticate
as well as encrypt our secret communications. This is done by adding
extra information to the message that only the sender could have com-
puted. Just like encryption, authentication comes in both private-key
(symmetric) and public-key (asymmetric) forms. Symmetric authenti-
cation schemes are typically called message authentication codes, while
the public-key equivalent is typically called a signature.

First, we will introduce a new cryptographic primitive: hash func-
tions. These can be used to produce both signature schemes as well
as message authentication schemes. Unfortunately, they are also very
often abused to produce entirely insecure systems.

10

Hash functions

10.1 Description

Hash functions are functions that take an input of indeterminate length
and produce a fixed-length value, also known as a ”digest”.

Simple hash functions have many applications. Hash tables, a
common data structure, rely on them. These simple hash functions
really only guarantee one thing: for two identical inputs, they’ll produce
an identical output. Importantly, there’s no guarantee that two identical
outputs imply that the inputs were the same. That would be impossible:
there’s only a finite amount of digests, since they’re fixed size, but there’s
an infinite amount of inputs. A good hash function is also quick to
compute.

Since this is a book on cryptography, we’re particularly interested
in cryptographic hash functions. Cryptographic hash functions can be

110

CHAPTER 10. HASH FUNCTIONS 111

used to build secure (symmetric) message authentication algorithms,
(asymmetric) signature algorithms, and various other tools such as
random number generators. We’ll see some of these systems in detail
in future chapters.

Cryptographic hash functions have much stronger properties than
regular hash functions, such as one that you might find in a hash table.
For a cryptographic hash function, we want it to be impossibly hard to:

1. modify a message without changing the hash.

2. generate a message that has a given hash.

3. find two different messages with the same hash.

The first property implies that cryptographic hash functions will
exhibit something known as the ”avalanche effect”. Changing even a
single bit in the input will produce an avalanche of changes through
the entire digest: each bit of the digest will have approximately 50%
chance of flipping. That doesn’t mean that every change will cause
approximately half of the bits to flip, but the cryptographic hash func-
tion does guarantee that the odds of that happening are extremely
large. More importantly it is impossibly hard to find such collisions or
near-collisions.

The second property, which states that it should be difficult to
find a message m that has a given hash value h, is called pre-image
resistance. This makes a hash function a one-way function: it’s very easy
to compute a hash for a given message, but it’s very hard to compute a
message for a given hash.

The third property talks about finding messages with the same hash
value, comes in two flavors. In the first one, there’s a given message m,

CHAPTER 10. HASH FUNCTIONS 112

and it should be difficult to find another message m′ with the same
hash value: that’s called second pre-image resistance. The second one is
stronger, stating that it should be hard to find any two messages m,m′

that have the same hash value. This is called collision resistance. Because
collision resistance is a stronger form of second pre-image resistance,
they’re sometimes also called weak and strong collision resistance.

These concepts are often named from the point of view of an attack,
rather than the resistance to an attack. For example, you’ll often hear
about a collision attack, which is an attack that attempts to generate a
hash collision, or a second pre-image attack, which attempts to find a
second pre-image that hashes to the same value as a given pre-image,
et cetera.

TODO: Maybe link to http://www.cs.ucdavis.edu/~rogaway/

papers/relates.pdf for further reading

10.2 MD5

MD5 is a hash function designed by Ronald Rivest in 1991 as an
extension of MD4. This hash function outputs 128-bit digests. Over
the course of the years, the cryptographic community has repeatedly
uncovered MD5’s weaknesses. In 1993, Bert den Boer and Antoon
Bosselaers published a paper demonstrating ”pseudo-collisions” for the
compression function of MD5. [18] Dobbertin expanded upon this
research and was able to produce collisions for the compression function.
In 2004, based on Dobbertin’s work, Xiaoyun Wang, Dengguo Feng,
Xuejia Lai and Hongbo Yu showed that MD5 is vulnerable to real
collision attacks. [33] The last straw came when Xiaoyun Wang et al.

http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/relates.pdf

CHAPTER 10. HASH FUNCTIONS 113

managed to generate colliding X.509 certificates and then presented a
distinguishing attack on HMAC-MD5. [33] [44]

Nowadays, it is not recommended to use MD5 for generating
digital signatures, but it is important to note that HMAC-MD5 is still
a secure form of message authentication; however, it probably shouldn’t
be implemented in new cryptosystems.

Five steps are required to compute an MD5 message digest:

1. Add padding. First, 1 bit is appended to the message and then 0
bits are added to the end until the length is 448 (mod 512).

2. Fill up the remaining 64 bits with the the length of the original
message modulo 264, so that the entire message is a multiple of
512 bits.

3. Initialize the state as four 32-bit words, A, B, C and D.These are
initialized with constants defined in the spec.

4. Process the input in 512 bit blocks; for each block, run four
”rounds” consisting of 16 similar operations each. The operations
all consist of shifts, modular addition, and a specific nonlinear
function, different for each round.

Once done, A‖B‖C‖D is the output of the hash. This padding
style combined with the concatenation at the end is what makes MD5
vulnerable to length extension attacks; more on that later.

In Python one can use the hashlib module to create an MD5 digest
as follows:

import hashlib

hashlib.md5(”crypto101”).hexdigest()

CHAPTER 10. HASH FUNCTIONS 114

10.3 SHA-1

SHA-1 is another hash function from the MD4 family designed by
the NSA, which produces a 160-bit digest. Just like MD5, SHA-1
is no longer considered secure for digital signatures. Many software
companies and browsers, including Google Chrome, have started to
retire support of the signature algorithm of SHA-1. Until this day no
one has managed to produce a collision on the full SHA-1 function, but
several methods have been published, including one by Xiaoyun Wang.
One of the most recent breakthroughs known as ”The SHAppening”
demonstrated freestart collisions for SHA-1. A freestart collision allows
one to pick the initial value known as the initialization vector at the
start of the compression function. [41]

Once again the hashlib Python module can be used to generate a
SHA-1 hash:

import hashlib

hashlib.sha1(”crypto101”).hexdigest()

10.4 SHA-2

SHA-2 is a family of hash functions including SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224 and SHA-512/256 and their
digest sizes 224, 256, 384, 512, 224 and 256 respectively. These hash
functions are based on the Merkle–Damgård construction and can be
used for digital signatures, message authentication and random number
generators. SHA-2 not only performs better than than SHA-1, it also
provides better security, because of its increase in collision resistance.

CHAPTER 10. HASH FUNCTIONS 115

SHA-224 and SHA-256 were designed for 32-bit processor reg-
isters, while SHA-384 and SHA-512 for 64-bit registers. The 32-bit
register variants will therefore run faster on a 32-bit CPU and the
64-bit variants will perform better on a 64-bit CPU. SHA-512/224
and SHA-512/256 are truncated versions of SHA-512 allowing use
of 64-bit words with an output size equivalent to the 32-bit register
variants (i.e., 224 and 256 digest sizes and better performance on a
64-bit CPU).

The following is a table that gives a good overview of the SHA-2
family:

Hash function Message size Block size Word size Digest size
SHA-224 < 264 512 32 224
SHA-256 < 264 512 32 256
SHA-384 < 2128 1024 64 384
SHA-512 < 2128 1024 64 512
SHA-512/224 < 2128 1024 64 224
SHA-512/256 < 2128 1024 64 256

You can hash an empty string with the hashlib module and compare
digest sizes as follows:

»> import hashlib

»> len(hashlib.sha224(””).hexdigest())

56

»> len(hashlib.sha256(””).hexdigest())

64

»> len(hashlib.sha384(””).hexdigest())

CHAPTER 10. HASH FUNCTIONS 116

96

»> len(hashlib.sha512(””).hexdigest())

128

Attacks on SHA-2

Several (pseudo-)collision and preimage attacks have been demon-
strated using SHA-256 and SHA-512 with less rounds. It is important
to note that by removing a certain amount of rounds one can’t attack the
entire algorithm. For instance, Somitra Kumar Sanadhya and Palash
Sarkar were able to cause collisions with SHA-256 using 24 of 64
rounds (removing the last 40 rounds). [39]

10.5 Password storage

One of the most common use cases for cryptographic hash functions,
and unfortunately one which is also completely and utterly broken, is
password storage.

Suppose you have a service where people log in using a username
and a password. You’d have to store the password somewhere, so that
next time the user logs in, you can verify the password they supplied.

Storing the password directly has several issues. Besides an obvious
timing attack in the string comparison, if the password database were
to be compromised, an attacker would be able to just go ahead and
read all of the passwords. Since many users re-use passwords, that’s
a catastrophic failure. Most user databases also contain their e-mail
addresses, so it would be very easy to hi-jack a bunch of your user’s
accounts that are unrelated to this service.

CHAPTER 10. HASH FUNCTIONS 117

Hash functions to the rescue

An obvious approach would be to hash the password using a cryp-
tographically secure hash function. Since the hash function is easy
to compute, whenever the user provides their password, you can just
compute the hash value of that, and compare that to what you stored
in the database.

If an attacker were to steal the user database, they could only see
the hash values, and not the actual passwords. Since the hash function
is impossible for an attacker to inverse, they wouldn’t be able to turn
those back into the original passwords. Or so people thought.

Rainbow tables

It turns out that this reasoning is flawed. The amount of passwords
that people actually use is very limited. Even with very good password
practices, they’re strings somewhere between 10 and 20 characters,
consisting mostly of things that you can type on common keyboards.
In practice though, people use even worse passwords: things based on
real words (password, swordfish), consisting of few symbols and few
symbol types (1234), or with predictable modifications of the above
(passw0rd).

To make matters worse, hash functions are the same everywhere.
If a user re-uses the same password on two sites, and both of them
hash the password using MD5, the values in the password database will
be the same. It doesn’t even have to be per-user: many passwords are
extremely common (password), so many users will use the same one.

Keep in mind that a hash function is easy to evaluate. What if
we simply try many of those passwords, creating huge tables mapping

CHAPTER 10. HASH FUNCTIONS 118

passwords to their hash values?
That’s exactly what some people did, and the tables were just as

effective as you’d expect them to be, completely breaking any vulnerable
password store. Such tables are called rainbow tables. This is because
they’re essentially sorted lists of hash function outputs. Those outputs
will be more or less randomly distributed. When written down in
hexadecimal formats, this reminded some people of color specifications
like the ones used in HTML, e.g. #52f211, which is lime green.

Salts

The reason rainbow tables were so incredibly effective was because
everyone was using one of a handful of hash functions. The same
password would result in the same hash everywhere.

This problem was generally solved by using salts. By mixing (ap-
pending or prepending1) the password with some random value before
hashing it, you could produce completely different hash values out of
the same hash function. It effectively turns a hash function into a whole
family of related hash functions, with virtually identical security and
performance properties, except with completely different output values.

The salt value is stored next to the password hash in the database.
When the user authenticates using the password, you just combine the
salt with the password, hash it, and compare it against the stored hash.

If you pick a sufficiently large (say, 160 bits/32 bytes), cryptographi-
cally random salt, you’ve completely defeated ahead-of-time attacks like
rainbow tables. In order to successfully mount a rainbow table attack,

1While you could also do this with XOR, it’s needlessly more error-prone, and
doesn’t provide better results. Unless you zero-pad both the password and the salt, you
might be truncating either one.

CHAPTER 10. HASH FUNCTIONS 119

an attacker would have to have a separate table for each of those salt
values. Since even a single table was usually quite large, storing a large
amount of them would be impossible. Even if an attacker would be able
to store all that data, they’d still have to compute it first. Computing a
single table takes a decent amount of time; computing 2160 different
tables is impossible.

Many systems used a single salt for all users. While that prevented
an ahead-of-time rainbow table attack, it still allowed attackers to attack
all passwords simultaneously, once they knew the value of the salt. An
attacker would simply compute a single rainbow table for that salt,
and compare the results with the hashed passwords from the database.
While this would have been prevented by using a different salt for each
user, systems that use a cryptographic hash with a per-user salt are still
considered fundamentally broken today; they are just harder to crack,
but not at all secure.

Perhaps the biggest problem with salts is that many programmers
were suddenly convinced they were doing the right thing. They’d heard
of broken password storage schemes, and they knew what to do in-
stead, so they ignored all talk about how a password database could be
compromised. They weren’t the ones storing passwords in plaintext, or
forgetting to salt their hashes, or re-using salts for different users. It
was all of those other people that didn’t know what they were doing
that had those problems. Unfortunately, that’s not true. Perhaps that’s
why broken password storage schemes are still the norm.

CHAPTER 10. HASH FUNCTIONS 120

Modern attacks on weak password systems

To a modern attack, salts quite simply don’t help. Modern attacks
take advantage of the fact that the hash function being used is easy
to compute. Using faster hardware, in particular video cards, we can
simply enumerate all of the passwords, regardless of salt.

TODO: more concrete performance numbers about GPUs
Salts may make precomputed attacks impossible, but they do very

little against an attacker that actually knows the salt. One approach you
might be inclined to take is to attempt to hide the salt from the attacker.
This typically isn’t very useful: if an attacker can manage to access
the database, attempts to hide the salt are unlikely to be successful.
Like many ineffective home-grown crypto schemes, this only protects
against an incredibly improbable event. It would be much more useful
to just use a good password store to begin with, than trying to fix a
broken one.

So where do we go from here?

In order to protect passwords, you need a (low-entropy) key derivation
function. We’ll discuss them in more detail in a future chapter.

While key derivation functions can be built using cryptographic
hash functions, they have very different performance properties. This is
a common pattern: while cryptographic hash functions are incredibly
important primitives for building secure tools (such as key derivation
functions or message authentication algorithms), they are routinely
abused as those tools themselves. In the rest of this chapter, we will see
other examples of how cryptographic hash functions can be used and
abused.

CHAPTER 10. HASH FUNCTIONS 121

10.6 Length extension attacks

In many hash functions, particularly the previous generations, the inter-
nal state kept by the hash function is used as the digest value. In some
poorly engineered systems, that causes a critical flaw: if an attacker
knows H(M1), it’s very simple to compute H(M1‖M2), without ac-
tually knowing the value of M1. Since you know H(M1), you know
the state of the hash function after it’s hashed M1. You can use that to
reconstruct the hash function, and ask it to hash more bytes. Setting the
hash function’s internal state to a known state you got from somewhere
else (such as H(M1)) is called fixation.

For most real-world hash functions, it’s a little bit more complicated
than that. They commonly have a padding step that an attacker needs
to recreate. MD5 and SHA-1 have the same padding step. It’s fairly
simple, so we’ll go through it:

1. Add a 1 bit to the message.

2. Add zero bits until the length is 448 (mod 512).

3. Take the total length of the message, before padding, and add it
as a 64-bit integer.

For the attacker to be able to compute H(M1‖M2) given H(M1),
the attacker needs to fake that padding, as well. The attacker will
actually compute H(M1‖G‖M2), where G is the glue padding, called
that way because it glues the two messages together. The hard part is
knowing the length of the message M1.

In many systems, the attacker can actually make fairly educated
guesses about the length of M1, though. As an example, consider

CHAPTER 10. HASH FUNCTIONS 122

the common (broken) example of a secret-prefix authentication code.
People send messages Mi, authenticated using Ai = H(S‖Mi), where
S is a shared secret. We’ll see (and break) this MAC algorithm in a
future section.

It’s very easy for the recipient to compute the same function, and
verify the code is correct. Any change to the message Mi will change
the value of Ai drastically, thanks to the avalanche effect. Unfortunately,
it’s quite easy for attackers to forge messages. Since the authentication
codes are usually sent together with the original message, the attacker
knows the length of the original message. Then, the attacker only has
to guess at the length of the secret, which is often fixed as part of the
protocol, and, even if it isn’t, the attacker will probably get in a hundred
tries or less. Contrast this with guessing the secret itself, which is
impossible for any reasonably chosen secret.

There are secure authentication codes that can be designed using
cryptographic hash functions: this one just isn’t it. We’ll see better ones
in a later chapter.

Some hash functions, particularly newer ones such as SHA-3 com-
petition finalists, do not exhibit this property. The digest is computed
from the internal state, instead of using the internal state directly.

This makes the SHA-3-era hash functions not only a bit more fool-
proof, but also enables them to produce simpler schemes for message
authentication. (We’ll elaborate on those in a later chapter.) While
length extension attacks only affected systems where cryptographic
hash functions were being abused in the first place, there’s something
to be said for preventing them anyway. People will end up making
mistakes, we might as well mitigate where we can.

CHAPTER 10. HASH FUNCTIONS 123

TODO: say why this prevents meet in the middle attacks?

10.7 Hash trees

Hash trees are trees2 where each node is identified by a hash value,
consisting of its contents and the hash value of its ancestor. The root
node, not having an ancestor, simply hashes its own contents.

This definition is very wide: practical hash trees are often more
restricted. They might be binary trees3, or perhaps only leaf nodes
carry data of their own, and parent nodes only carry derivative data.
Particularly these restricted kinds are often called Merkle trees.

Systems like these or their variants are used by many systems, partic-
ularly distributed systems. Examples include distributed version control
systems such as Git, digital currencies such as Bitcoin, distributed peer-
to-peer networks like Bittorrent, and distributed databases such as
Cassandra.

10.8 Remaining issues

We’ve already illustrated that hash functions, by themselves, can’t au-
thenticate messages, because anyone can compute them. Also, we’ve
illustrated that hash functions can’t be used to secure passwords. We’ll
tackle both of these problems in the following chapters.

While this chapter has focused heavily on what hash functions can’t
do, it can’t be stressed enough that they are still incredibly important

2Directed graphs, where each node except the root has exactly one ancestor.
3Each non-leaf node has no more than two children

CHAPTER 10. HASH FUNCTIONS 124

cryptographic primitives. They just happen to be commonly abused
cryptographic primitives.

11

Message authentication
codes

11.1 Description

A Message authentication code (MAC) is a small bit of information
that can be used to check the authenticity and the integrity of a message.
These codes are often called ”tags”. A MAC algorithm takes a message
of arbitrary length and a secret key of fixed length, and produces the
tag. The MAC algorithm also comes with a verification algorithm that
takes a message, the key and a tag, and tells you if the tag was valid or
not. (It is not always sufficient to just recompute a tag and check if
they are the same; many secure MAC algorithms are randomized, and
will produce different tags every time you apply them.)

125

CHAPTER 11. MESSAGE AUTHENTICATION CODES 126

Note that we say ”message”here instead of ”plaintext”or ”ciphertext”.
This ambiguity is intentional. In this book we’re mostly interested in
MACs as a way to achieve authenticated encryption, so the message
will always be a ciphertext. That said, there’s nothing wrong with a
MAC being applied to a plaintext message. In fact, we will be seeing
examples of secure authenticated encryption schemes that explicitly
allow for authenticated (but not encrypted) information to be sent
along with the authenticated ciphertext.

Often, when you just want to talk about the authenticity and in-
tegrity of a particular message, it may be more practical to use a signature
algorithm,which we’ll talk about in a later chapter. For now, all you need
to know is that the term ”signature” is normally reserved for asymmetric
algorithms, whereas this chapter deals with symmetric algorithms.

Secure MACs

We haven’t quite defined yet exactly which properties we want from a
secure MAC.

We will be defending against an active attacker. The attacker will be
performing a chosen message attack. That means that an attacker will ask
us the tag for any number of messages mi, and we’ll answer truthfully
with the appropriate tag ti.

An attacker will then attempt to produce an existential forgery, a
fancy way of saying that they will produce some new valid combination
of (m, t). The obvious target for the attacker is the ability to produce
valid tags t′ for new messages m′ of their choosing. We will also
consider the MAC insecure if an attacker can compute a new, different
valid tag t′ for a message mi that we previously gave them a valid tag

CHAPTER 11. MESSAGE AUTHENTICATION CODES 127

for.

Why does a MAC take a secret key?

If you’ve had to deal with verifying the integrity of a message before,
you may have used checksums (like CRC32 or Adler32) or even crypto-
graphic hashes (like the SHA family) in order to compute a checksum
for the message (depending on the algorithm and who you’re talking
to, they may have called it ”hash” or ”digest”, too).

Let’s say that you’re distributing a software package. You have some
tarballs with source code in them, and maybe some binary packages
for popular operating systems. Then you put some (cryptographically
secure!) hashes right next to them, so that anyone who downloads them
can verify the hashes and be confident that they downloaded what they
think they downloaded.

Of course, this scheme is actually totally broken. Computing those
hashes is something everyone can do. You’re even relying on that fact
for your user to be able to verify their download. That also means that
an attacker that modified any of the downloads can just compute the
hash again for the modified download and save that value. A user
downloading the modified file will compute its hash and compare it
against the modified hash, and conclude that the download worked.
The scheme provided no help whatsoever against an attacker modifying
the download, either as stored, or in transit.

In order to do this securely, you would either apply a signature
algorithm to the binaries directly, or by signing the digests, as long as
the hash function used to produce the digest is secure against second-
preimage attacks. The important difference is that producing a signature

CHAPTER 11. MESSAGE AUTHENTICATION CODES 128

(using either a pre-shared key with your users, or, preferably, a public-
key signature algorithm) is not something that an attacker can do. Only
someone who has the secret keys can do that.

11.2 Combining MAC and message

As we’ve mentioned before, unauthenticated encryption is bad. That’s
why we introduced MACs. Of course, for a MAC to be useful, it
has to make it to the recipient. Since we’re explicitly talking about
authenticating encryption, now, we’ll stop using the word ”message”
and instead use the less ambiguous ”plaintext” and ”ciphertext”.

There are three common ways to combine a ciphertext with a MAC.

1. Authenticate and encrypt. You authenticate and encrypt the
plaintext separately. This is how SSH does it. In symbols: C =

E(KC , P), t = MAC(KM , P), and you send both ciphertext
C and tag t.

2. Authenticate, then encrypt. You authenticate the plaintext and
then encrypt the combination of the plaintext and the authen-
tication tag. This is how TLS usually does it. In symbols:
t = MAC(KM , P), C = E(KC , P‖t), and you only send
C. (You don’t need to send t, because it’s already an encrypted
part of C.)

3. Encrypt, then authenticate. You encrypt the plaintext, compute
the MAC of that ciphertext. This is how IPSec does it. In
symbols: C = E(KC , P), t = MAC(KM , C), and you send
both C and t.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 129

All of these options were studied and compared extensively. [29]
[6] We now know that out of all of these, encrypt-then-authenticate is
unequivocally the best option. It’s so emphatically the best option that
Moxie Marlinspike, a well-respected information security researcher,
has a principle called ”The Cryptographic Doom Principle” for any
system that does not follow this pattern [34]. Moxie claims that any
system that does anything before checking the MAC is doomed. Both
authenticate-and-encrypt and authenticate-then-encrypt require you
to decrypt something before you can verify the authentication.

Authenticate-then-encrypt

Authenticate-then-encrypt is a poor choice, but it’s a subtle poor choice.
It can still be provably secure, but only under certain conditions. [29]

At first sight, this scheme appears to work. Sure, you have to decrypt
before you can do anything, but to many cryptographers, including the
designers of TLS, this did not appear to pose a problem.

In fact, prior to rigorous comparative study of different composition
mechanisms, many preferred this setup. In a critique of IPSec, Schneier
and Ferguson, two veteran cryptographers, considered IPSec’s use of
encrypt-then-authenticate was a flaw, preferring TLS’s authenticate-
then-encrypt. [20] While they may have had a plausible (albeit mostly
heuristic) argument for the time, this criticism is completely superseded
by the provable security of encrypt-then-authenticate schemes. [29]
[6]

TODO: Explain Vaudenay CBC attack [43]

CHAPTER 11. MESSAGE AUTHENTICATION CODES 130

Authenticate-and-encrypt

Authenticate-and-encrypt has some serious problems. Since the tag
authenticates the plaintext and that tag is part of the transmitted mes-
sage, an attacker will be able to recognize two plaintext messages are
the same because their tags will also be the same. This essentially leads
to the same problem we saw with ECB mode, where an attacker can
identify identical blocks. That’s a serious problem, even if they can’t
decrypt those blocks.

TODO: Explain how this works in SSH (see Moxie’s Doom article)

11.3 A naive attempt with hash functions

Many ways of constructing MACs involve hash functions. Perhaps one
of the simplest ways you could imagine doing that is to just prefix the
message with the secret key and hash the whole thing:

t = H(k‖m)

This scheme is most commonly called ”Prefix-MAC”, because it is
a MAC algorithm that works by using the secret key as a prefix.

The cryptographically secure hash function H guarantees a few
things that are important to us here:

• The tag t will be easy to compute; the hash function H itself is
typically very fast. In many cases we can compute the common
key part ahead of time, so we only have to hash the message
itself.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 131

• Given any number of tags, there is no way for an attacker to
”invert” the hash function to recover k, which would allow them
to forge arbitrary messages.

• Given any number of tags, there is no way for an attacker to
”rewind” the hash function to recover H(k), which may allow
them to forge almost arbitrary messages.

One small caveat: we’re assuming that the secret key k has enough
entropy. Otherwise, we have the same issue that we had for password
storage using hash functions: an attacker could just try every single
k until one of them matches. Once they’ve done that, they’ve almost
certainly found the correct k. That’s not really a failure of the MAC
though: if your secret key contains so little entropy that it’s feasible
for an attacker to try all of them, you’ve already lost, no matter which
MAC algorithm you pick.

Breaking prefix-MAC

Despite being quite common, this MAC is actually completely inse-
cure for most (cryptographically secure!) hash functions H , including
SHA-2.

As we saw in the chapter on hash functions, many hash functions,
such as MD5, SHA-0, SHA-1 and SHA-2, pad the message with a
predictable padding before producing the output digest. The output
digest is the same thing as the internal state of the hash function. That’s
a problem: the attacker can use those properties to forge messages.

First, they use the digest as the internal state of the hash function.
That state matches the state you get when you hash k‖m‖p, where k is

CHAPTER 11. MESSAGE AUTHENTICATION CODES 132

the secret key, m is the message, and p is that predictable padding. Now,
the attacker gets the hash function to consume some new bytes: the
attacker’s chosen message m′. The internal state of the hash function is
now what you get when you feed it k‖m‖p‖m′. Then, the attacker tells
the hash function to produce a digest. Again, the hash function appends
a padding, so we’re now at k‖m‖p‖m′‖p′. The attacker outputs that
digest as the tag. That is exactly the same thing as what happens when
you try to compute the tag for the message m‖p‖m′ under the secret
key k. So, the attacker has successfully forged a tag for a new message,
and, by our definition, the MAC is insecure.

This attack is called a length extension attack, because you are
extending a valid message. The padding in the middle p, which started
out as the padding for the original message but has become just some
data in the middle, is called glue padding, because it glues the original
message m and the attacker’s message m′ together.

This attack might sound a little academic, and far from a practical
problem. We may have proven that the MAC is insecure by our def-
inition, but the only tags the attacker can successfully forge are for
very limited modifications of real messages. Specifically, the attacker
can only forge tags for a message that consists of a message we sent,
followed by some binary junk, followed by something the attacker
chooses. However, it turns out that for many systems, this is plenty to
result in real breaks. Consider the following Python code that parses a
sequence of key-value pairs that look like k1=v1&k2=v2&...:1

def parse(s):

1I realize there are briefer ways to write that function. I am trying to make it
comprehensible to most programmers; not pleasing to advanced Pythonistas.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 133

pairs = s.split(”&”)

parsed = {}

for pair in pairs:

key, value = pair.split(”=”)

parsed[key] = value

return parsed

The parsing function only remembers the last value for a given key:
previous values in the dictionary are overwritten. As a result, an attacker
mounting a length extension attack can effectively control the parsed
dictionary entirely.

If you’re thinking that this code has many issues; sure, it does. For
example, it doesn’t handle escaping correctly. But even if it did, that
wouldn’t really fix the length extension attack problem. Most parsing
functions will perfectly happily live with that binary junk in the middle.
Hopefully it convinces you that there is in fact a pretty good chance that
an attacker can produce messages with valid tags that say something
entirely different from what you intended.

The prefix-MAC construction is actually secure with many current
(SHA-3-era) hash functions, such as Keccak and BLAKE(2). The
specifications for these hash functions even recommend it as a secure
and fast MAC. They use various techniques to foil length extension
attacks: for example, BLAKE keeps track of the number of bits that
have been hashed so far, while BLAKE2 has a finalization flag that
marks a specific block as the last.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 134

Variants

Issues with prefix-MAC has tempted people to come up with all sorts
of clever variations. For example, why not add the key to the end
instead of the beginning (t = H(m‖k), or ”suffix-MAC”, if you will)?
Or maybe we should append the key to both ends for good measure
(t = H(k‖m‖k), ”sandwich-MAC”perhaps?)?

For what it’s worth, both of these are at least better than prefix-
MAC, but both of these have serious issues. For example, a suffix-
MAC system is more vulnerable to weaknesses in the underlying hash
function; a successful collision attack breaks the MAC. Sandwich-
MAC has other, more complex issues.

Cryptography has produced much stronger MACs, which we’ll see
in the next few sections. There are no good reasons not to use them.

11.4 HMAC

Hash-based Message Authentication Code (HMAC) is a standard to
produce a MAC with a cryptographic hash function as a parameter. It
was introduced in 1996 in a paper by Bellare, Canetti and Krawczyk.
Many protocols at the time implemented their own attempt at message
authentication using hash functions. Most of these attempts failed. The
goal of that paper specifically was to produce a provably secure MAC
that didn’t require anything beyond a secret key and a hash function.

One of the nice features of HMAC is that it has a fairly strong secu-
rity proof. As long as the underlying hash function is a pseudorandom
function, HMAC itself is also a pseudorandom function. The underly-
ing hash function doesn’t even have to be collision resistant for HMAC

CHAPTER 11. MESSAGE AUTHENTICATION CODES 135

to be a secure MAC. [5] This proof was introduced after HMAC itself,
and matched real-world observations: even though MD5 and to a lesser
extent SHA-0 had serious collision attacks, HMAC constructions built
from those hash functions still appeared to be entirely secure.

The biggest difference between HMAC and prefix-MAC or its
variants is that the message passes through a hash function twice, and
is combined with the key before each pass. Visually, HMAC looks like
this:

pinner

pouter

(= 0x3636 . . .)

(= 0x5c5c . . .)

{

b bits

{

b bits

k

k

m

t

‖

H

‖

H

The only surprising thing here perhaps are the two constants pinner
(the inner padding, one hash function’s block length worth of 0x36
bytes) and pouter (the outer padding, one block length worth of 0x5c
bytes). These are necessary for the security proof of HMAC to work;

CHAPTER 11. MESSAGE AUTHENTICATION CODES 136

their particular values aren’t very important, as long as the two constants
are different.

The two pads are XORed with the key before use. The result
is either prepended to the original message (for the inner padding
pinner) or to the intermediate hash output (for the outer padding pouter).
Because they’re prepended, the internal state of the hash function after
processing the prefixes can be computed ahead of time, shaving a few
cycles off the MAC computation time.

11.5 One-time MACs

So far, we’ve always assumed that MAC functions can be used with a
single key to produce secure MACs for a very large number of messages.
By contrast, one-time MACs are MAC functions that can only securely
be used once with a single key. That might sound like a silly idea, since
we’ve already talked about regular secure MACs. An algorithm that
only works once just seems objectively worse. However, they have
several big advantages:

• They can be incredibly fast to evaluate, even for very large mes-
sages.

• They have a compelling security proof based on the information
content of the tag.

• A construction exists to turn a one-time MAC into a secure
multiple-use MAC, removing the principal problem.

A typical simple example of such one-time MACs consists of a
simple multiplication and addition modulo some large prime p. In this

CHAPTER 11. MESSAGE AUTHENTICATION CODES 137

case, the secret key consists of two truly random numbers a and b, both
between 1 and p.

t ≡ m · a+ b (mod p)

This simple example only works for one-block messages m, and
some prime p slightly bigger than the biggest m. It can be extended to
support bigger messages M consisting of blocks mi by using a message-
specific polynomial P :

t ≡ (mn · an + · · ·+m1 · a)︸ ︷︷ ︸
P (M,a)

+b (mod p)

This might look like a lot of computation, but this polynomial can
be efficiently evaluated by iteratively factoring out the common factor
a (also known as Horner’s rule):

P (M,a) ≡ a · (a · (a · (· · ·) +m2) +m1) + b (mod p)

By computing each multiplication modulo p, the numbers will
remain conveniently small.

In many ways, a one-time MAC is to authentication what a one-
time pad is to encryption. The security argument is similar: as long
as the key is only used once, an attacker learns no information about
the key or the message, because they are being irreversibly mixed. This
demonstrates that the MAC is secure against attackers trying to produce
existential forgeries, even when that attacker has infinite computational
power.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 138

Also like a one-time pad, the security argument relies on two very
important properties about the keys a, b:

• They have to be truly random.

• They have to be used at most once.

Re-using a and b

We’ll illustrate that our example MAC is insecure if it is used to au-
thenticate two messages m1,m2 with the same key (a, b):

t1 ≡ m1 · a+ b (mod p)

t2 ≡ m2 · a+ b (mod p)

An attacker can reconstruct a, b with some simple modular arith-
metic: 2

2For a refresher on modular arithmetic, including an explanation of the modular
inverse, please refer to the appendix.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 139

t1 − t2 ≡ (m1 · a+ b)− (m2 · a+ b) (mod p)

⇓ (remove parentheses)

t1 − t2 ≡ m1 · a+ b−m2 · a− b (mod p)

⇓ (b and −b cancel out)

t1 − t2 ≡ m1 · a−m2 · a (mod p)

⇓ (factor out a)

t1 − t2 ≡ a · (m1 −m2) (mod p)

⇓ (flip sides, multiply by inverse of (m1 −m2))

a ≡ (t1 − t2)(m1 −m2)
−1 (mod p)

Plugging a into either the equation for t1 or t2 gets b:

t1 ≡ m1 · a+ b (mod p)

⇓ (reorder terms)

b ≡ t1 −m1 · a (mod p)

As you can see, as with one-time pads, re-using the key even once
leads to a complete failure of the cryptosystem to preserve privacy or
integrity, as the case may be. As a result, one-time MACs are a bit
dangerous to use directly. Fortunately, this weakness can be solved with
a construction called a Carter-Wegman MAC, which we’ll see in the
next section.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 140

11.6 Carter-Wegman MAC

As we’ve already stated, the obvious problem with one-time MACs
is their limited practicality. Fortunately, it turns out that there is a
construction, called a Carter-Wegman MAC, that turns any secure
one-time MAC into a secure many-time MAC while preserving most
of the performance benefit.

The idea behind a Carter-Wegman MAC is that you can use a
one-time MAC O to produce a tag for the bulk of the data, and then
encrypt a nonce n with a pseudorandom function F , such as a block
cipher, to protect that one-time tag:

CW ((k1, k2), n,M) = F (k1, n)⊕O(k2,M)

As long asF is a secure pseudorandom function, the nonce’s encryp-
tion is totally unpredictable. In the eyes of an attacker, that means the
XOR operation will randomly flip the bits of the one-time MAC tag
O(k2,M). Because this masks the real value of the one-time MAC tag,
the attacker can not perform the algebraic tricks we saw for one-time
MACs recovering the key when it is used more than once.

Keep in mind that while Carter-Wegman MACs take two distinct
keys k1 and k2, and that Carter-Wegman MACs are related to one-
time MACs, some of which also take two distinct keys a and b, they
are not the same two keys. The Carter-Wegman MAC’s k2 is the only
key passed to the fast one-time MAC O. If that fast one-time MAC is
our earlier example that takes two keys a and b, that k2 would have to
get split up into those two keys. The Carter-Wegman MAC key would
then be (k1, k2) = (k1, (a, b)).

CHAPTER 11. MESSAGE AUTHENTICATION CODES 141

You can tell how a Carter-Wegman MAC exploits the benefits of
both kinds of MACs by considering the two terms of the equation
separately. In F (k1, n), F is just a regular pseudorandom function,
such as a block cipher. It is quite slow by comparison to the one-time
MAC. However, its input, the nonce, is very small. The unpredictable
output of the block cipher masks the output of the one-time MAC. In
the second term, O(k2,M), the large input message M is only handled
by the very fast one-time MAC O.

These constructions, in particular Poly1305-AES, currently repre-
sent some of the state of the art in MAC functions. The paper ([12])
and RFC ([11]) for an older, related MAC function called UMAC may
also be good sources of extra background information, since they go into
extensive details of the hows and whys of a practical Carter-Wegman
MAC.

11.7 Authenticated encryption modes

So far, we’ve always clearly distinguished encryption from authentica-
tion, and explained the need for both. The majority of secure connec-
tions that are set up every day have that distinction as well: they treat
encryption and authentication as fundamentally different steps.

Alternatively, we could make authentication a fundamental part
of the mode of operation. After all, we’ve already seen that unau-
thenticated encryption is virtually never what you want; it is, at best,
something you occasionally have to live with. It makes sense to use
constructions that not only guarantee the privacy of an arbitrary stream,
but also its integrity.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 142

As we’ve already seen, many of the methods of composing authenti-
cation and encryption are inherently insecure. By doing that in a fixed,
secure way such as a properly designed authenticated encryption mode,
an application developer no longer has to make that choice, which
means they also can’t inadvertently make the wrong choice.

Authenticated Encryption with Associated Data (AEAD)

AEAD is a feature of certain modes of authenticated encryption. Such
modes of operation are called AEAD modes. It starts with the premise
that many messages actually consist of two parts:

• The actual content itself

• Metadata: data about the content

In many cases the metadata should be plaintext, but the content
itself should be encrypted. The entire message should be authenticated:
it should not be possible for an attacker to mess with the metadata and
have the resulting message still be considered valid.

Consider an e-mail alternative as an example cryptosystem. The
metadata about the content might contain the intended recipient. We
definitely want to encrypt and authenticate the content itself, so that
only the recipient can read it. The metadata, however, has to be in
plaintext: the e-mail servers performing the message delivery have to
know which recipient to send the message to.

Many systems would leave this metadata unauthenticated, allowing
attackers to modify it. In our case, that looks like it may just lead to
messages being delivered to the wrong inbox. That also means that an

CHAPTER 11. MESSAGE AUTHENTICATION CODES 143

attacker can force e-mail to be delivered to the wrong person, or not
delivered at all.

AEAD modes address this issue by providing a specified way to
add metadata to encrypted content, so that the whole of the encrypted
content and the metadata is authenticated, and not the two pieces
separately:

A E {{encrypted

authenticated

11.8 OCB mode

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

Usually, you will want to use a much more high
level cryptosystem, such as OpenPGP, NaCl or TLS.

OCB mode is an AEAD mode of operation. It is one of the earliest
developed AEAD modes.

As you can see, most of this scheme looks quite similar to ECB
mode. The name offset codebook (OCB) is quite similar to electronic
codebook, as well. OCB does not share the security issues ECB mode

CHAPTER 11. MESSAGE AUTHENTICATION CODES 144

k E k E k E

P1

∆1

∆1

C1

Pn

∆n

∆n

Cn

X

∆X

ta

t

. . .

. . .

has, however, as there are several important differences, such as the
offsets ∆i introduced in each individual block encryption.

Being an AEAD mode, OCB mode provides a cryptographically
secure authentication tag t, which is built from X , a very simple (not
cryptographically secure by itself) checksum of the plaintext. There is
also another, separate tag ta, which authenticates the AEAD associated
data. That associated data tag ta is computed as follows:

This design has a number of interesting properties. For example,
it is very fast: only requiring roughly one block cipher operation per
encrypted or associate data block, as well as one additional block cipher
operation for the final tag. The offsets (∆i) are also extremely easy to
compute. The checksum block X is just all of the plaintext blocks Pi

XORed together. Finally, OCB mode is easy to compute in parallel;
only the final authentication tag is dependent on all the preceding
information.

CHAPTER 11. MESSAGE AUTHENTICATION CODES 145

k E k E

P1

∆1

Pn

∆n

. . .

ta

OCB mode also comes with a built-in padding scheme: it be-
haves slightly differently when the plaintexts or authentication text
is not exactly a multiple of the block size. This means that, unlike
with PKCS#5/PKCS#7 padding, there isn’t an entire block of ”wasted”
padding if the plaintext happens to be a multiple of the block size.

Despite having several interesting properties going for it, OCB
mode has not received as much attention as some of the alternatives; one
of the main reasons being that it is patent encumbered. Even though
a number of patent licenses are available, including a free-of-charge
one for open source software, this does not appear to have significantly
impacted how much OCB mode is used in the field. [38]

CHAPTER 11. MESSAGE AUTHENTICATION CODES 146

11.9 GCM mode

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

Usually, you will want to use a much more high
level cryptosystem, such as OpenPGP, NaCl or TLS.

GCM mode is an AEAD mode with an unfortunate case of RAS (re-
dundant acronym syndrome) syndrome: GCM itself stands for ”Galois
Counter Mode”. It is formalized in a NIST Special Publication[2] and
roughly boils down to a combination of classical CTR mode with a
Carter-Wegman MAC.That MAC can be used by itself as well, which
is called GMAC.

Authentication

GCM mode (and by extension GMAC)

12

Signature algorithms

12.1 Description

A signature algorithm is the public-key equivalent of a message authen-
tication code. It consists of three parts:

1. a key generation algorithm, which can be shared with other
public-key algorithms

2. a signature generation algorithm

3. a signature verification algorithm

Signature algorithms can be built using encryption algorithms.
Using the private key, we produce a value based on the message, usually
using a cryptographic hash function. Anyone can then use the public

147

CHAPTER 12. SIGNATURE ALGORITHMS 148

key to retrieve that value, compute what the value should be from the
message, and compare the two to verify. The obvious difference between
this and public-key encryption is that in signing, the private key is used
to produce the message (in this case the signature) and the public key
is used to interpret it, which is the opposite of how encryption and
decryption work.

The above explanation glosses over many important details. We’ll
discuss real schemes in more detail below.

12.2 RSA-based signatures

PKCS#1 v1.5

TODO (see #48)

PSS

TODO (see #49)

12.3 DSA

The Digital Signature Algorithm (DSA) is a US Federal Government
standard for digital signatures. It was first proposed by the National
Institute of Standards and Technology (NIST) in 1991, to be used in
the Digital Signature Standard (DSS).The algorithm is attributed to
David W. Kravitz, a former technical advisor at the NSA.

DSA key generation happens in two steps. The first step is a choice
of parameters, which can be shared between users. The second step is
the generation of public and private keys for a single user.

CHAPTER 12. SIGNATURE ALGORITHMS 149

Parameter generation

We start by picking an approved cryptographic hash function H . We
also pick a key length L and a prime length N . While the original DSS
specified that L be between 512 and 1024, NIST now recommends
a length of 3072 for keys with a security lifetime beyond 2030. As L
increases, so should N .

Next we choose a prime q of length N bits; N must be less than or
equal to the length of the hash output. We also pick an L-bit prime p
such that p− 1 is a multiple of q.

The last part is the most confusing. We have to find a number g
whose multiplicative order (mod p) is q. The easy way to do this is to
set g ≡ 2(p−1)/q (mod p). We can try another number greater than 2,
and less than p− 1, if g comes out to equal 1.

Once we have parameters (p, q, g), they can be shared between
users.

Key generation

Armed with parameters, it’s time to compute public and private keys
for an individual user. First, select a random x with 0 < x < q.
Next, calculate y where y ≡ gx (mod p). This delivers a public key
(p, q, g, y), and private key x.

Signing a message

In order to sign a message, the signer picks a random k between 0 and
q. Picking that k turns out to be a fairly sensitive and involved process;

CHAPTER 12. SIGNATURE ALGORITHMS 150

but we’ll go into more detail on that later. With k chosen, they then
compute the two parts of the signature r, s of the message m:

r ≡ (gk (mod p)) (mod q)

s ≡ k−1(H(m) + xr) (mod q)

If either of these happen to be 0 (a rare event, with 1 in q odds, and
q being a pretty large number), pick a different k.

TODO: Talk about k-1, the modular inverse (see #52)

Verifying a signature

Verifying the signature is a lot more complex. Given the message m
and signature (r, s):

w ≡ s−1 (mod q)

u1 ≡ wH(m) (mod q)

u2 ≡ wr (mod q)

v ≡ (gu1yu2 (mod p)) (mod q)

If the signature is valid that final result v will be equal to r, the
second part of the signature.

The trouble with k

While there is nothing wrong with DSA done right, it’s very easy
to get it wrong. Furthermore, DSA is quite sensitive: even a small
implementation mistake results in a broken scheme.

CHAPTER 12. SIGNATURE ALGORITHMS 151

In particular, the choice of the signature parameter k is critical. The
requirements for this number are among the strictest of all random
numbers in cryptographic algorithms. For example, many algorithms
require a nonce. A nonce just has to be unique: you can use it once,
and then you can never use it again. It doesn’t have to be secret. It
doesn’t even have to be unpredictable. A nonce can be implemented
by a simple counter, or a monotonic clock. Many other algorithms,
such as CBC mode, use an initialization vector. It doesn’t have to be
unique: it only has to be unpredictable. It also doesn’t have to be secret:
initialization vectors are typically tacked on to the ciphertext. DSA’s
requirements for the k value are a combination of all of these:

• It has to be unique.

• It has to be unpredictable.

• It has to be secret.

Muddle with any of these properties, and an attacker can probably
retrieve your secret key, even with a modest amount of signatures. For
example, an attacker can recover the secret key knowing only a few bits
of k, plus a large amount of valid signatures. [37]

It turns out that many implementations of DSA don’t even get the
uniqueness part right, happily reusing k values. That allows a direct
recovery of the secret key using basic arithmetic. Since this attack is
much simpler to understand, very commonly applicable, and equally
devastating, we’ll discuss it in detail.

Suppose that an attacker sees multiple signatures (ri, si), for dif-
ferent messages mi, all with the same k. The attacker picks any two

CHAPTER 12. SIGNATURE ALGORITHMS 152

signatures (r1, s1) and (r2, s2) of messages m1 and m2 respectively.
Writing down the equations for s1 and s2:

s1 ≡ k−1(H(m1) + xr1) (mod q)

s2 ≡ k−1(H(m2) + xr2) (mod q)

The attacker can simplify this further: r1 and r2 must be equal,
following the definition:

ri ≡ gk (mod q)

Since the signer is reusing k, and the value of r only depends on k,
all ri will be equal. Since the signer is using the same key, x is equal in
the two equations as well.

Subtract the two si equations from each other, followed by some
other arithmetic manipulations:

s1 − s2 ≡ k−1(H(m1) + xr)− k−1(H(m2) + xr) (mod q)

≡ k−1 ((H(m1) + xr)− (H(m2) + xr)) (mod q)

≡ k−1(H(m1) + xr −H(m2)− xr) (mod q)

≡ k−1(H(m1)−H(m2)) (mod q)

This gives us the simple, direct solution for k:

k ≡ (H(m1)−H(m2)) (s1 − s2)
−1 (mod q)

The hash values H(m1) and H(m2) are easy to compute. They’re
not secret: the messages being signed are public. The two values s1

CHAPTER 12. SIGNATURE ALGORITHMS 153

and s2 are part of the signatures the attacker saw. So, the attacker can
compute k. That doesn’t give him the private key x yet, though, or the
ability to forge signatures.

Let’s write the equation for s down again, but this time thinking of
k as something we know, and x as the variable we’re trying to solve for:

s ≡ k−1(H(m) + xr) (mod q)

All (r, s) that are valid signatures satisfy this equation, so we can
just take any signature we saw. Solve for x with some algebra:

sk ≡ H(m) + xr (mod q)

sk −H(m) ≡ xr (mod q)

r−1(sk −H(m)) ≡ x (mod q)

Again, H(m) is public, plus the attacker needed it to compute k,
anyway. They’ve already computed k, and s is plucked straight from the
signature. That just leaves us with r−1 (mod q) (read as: ”the modular
inverse of r modulo q”), but that can be computed efficiently as well.
(For more information, see the appendix on modular arithmetic; keep in
mind that q is prime, so the modular inverse can be computed directly.)
That means that the attacker, once they’ve discovered the k of any
signature, can recover the private key directly.

So far, we’ve assumed that the broken signer would always use the
same k. To make matters worse, a signer only has to re-use k once in
any two signatures that the attacker can see for the attack to work. As
we’ve seen, if k is repeated, the ri values repeat as well. Since ri is a
part of the signature, it’s very easy to see when the signer has made this

CHAPTER 12. SIGNATURE ALGORITHMS 154

mistake. So, even if reusing k is something the signer only does rarely
(because their random number generator is broken, for example), doing
it once is enough for the attacker to break the DSA scheme.

In short, reusing the k parameter of a DSA signing operation means
an attacker recovers the private key.

TODO:Debian http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

12.4 ECDSA

TODO: explain (see #53)
As with regular DSA, the choice of k is extremely critical. There

are attacks that manage to recover the signing key using a few thousand
signatures when only a few bits of the nonce leak. [36]

12.5 Repudiable authenticators

Signatures like the ones we described above provide a property called
non-repudiation. In short, it means that you can’t later deny being the
sender of the signed message. Anyone can verify that the signature was
made using your private key, something only you could do.

That may not always be a useful feature; it may be more prudent
to have a scheme where only the intended recipient can verify the
signature. An obvious way to design such a scheme would be to make
sure that the recipient (or, in fact, anyone else) could have computed an
identical value.

Such messages can be repudiated; such a scheme is often called
”deniable authentication”. While it authenticates the sender to the
intended recipient, the sender can later deny (to third parties) having

http://rdist.root.org/2009/05/17/the-debian-pgp-disaster-that-almost-was/

CHAPTER 12. SIGNATURE ALGORITHMS 155

sent the message. Equivalently, the recipient can’t convince anyone else
that the sender sent that particular message.

13

Key derivation functions

13.1 Description

A key derivation function is a function that derives one or more secret
values (the keys) from one secret value.

Many key derivation functions can also take a (usually optional)
salt parameter. This parameter causes the key derivation function to not
always return the same output keys for the same input secret. As with
other cryptosystems, salts are fundamentally different from the secret
input: salts generally do not have to be secret, and can be re-used.

Key derivation functions can be useful, for example, when a cryp-
tographic protocol starts with a single secret value, such as a shared
password or a secret derived using Diffie-Hellman key exchange, but
requires multiple secret values to operate, such as encryption and MAC

156

CHAPTER 13. KEY DERIVATION FUNCTIONS 157

keys. Another use case of key derivation functions is in cryptographi-
cally secure random number generators, which we’ll see in more detail
in a following chapter, where they are used to extract randomness with
high entropy density from many sources that each have low entropy
density.

There are two main categories of key derivation functions, depend-
ing on the entropy content of the secret value, which determines how
many different possible values the secret value can take.

If the secret value is a user-supplied password, for example, it typi-
cally contains very little entropy. There are very few values the password
will take. As we’ve already established in a previous section on password
storage, that means it is necessary that the key derivation function is
hard to compute. That means it requires a non-trivial amount of com-
puting resources, such as CPU cycles or memory. If the key derivation
function were easy to compute, an attacker could simply enumerate all
possible values of the shared secret, since there are few possibilities, and
then compute the key derivation function for all of them. As we’ve seen
in that previous section on password storage, this is how most modern
attacks on password stores work. Using an appropriate key derivation
function would prevent these attacks. In this chapter, we’ll see scrypt,
as well as other key derivation functions in this category.

On the other hand, the secret value could also have a high en-
tropy content. For example, it could be a shared secret derived from a
Diffie-Hellman key agreement protocol, or an API key consisting of
cryptographically random bytes (we’ll discuss cryptographically secure
random number generation in the next chapter). In that case, it isn’t
necessary to have a key derivation function that’s hard to compute:

CHAPTER 13. KEY DERIVATION FUNCTIONS 158

even if the key derivation function is trivial to compute, there are too
many possible values the secret can take, so an attacker would not be
able to enumerate them all. We’ll see the best-of-breed of this kind of
key derivation function, HKDF, in this chapter.

13.2 Password strength

TODO: NIST Special Publication 800-63

13.3 PBKDF2

13.4 bcrypt

13.5 scrypt

13.6 HKDF

The HMAC-based (Extract-and-Expand) Key Derivation Function
(HKDF), defined in RFC 5869[31] and explained in detail in a related
paper[30], is a key derivation function designed for high entropy in-
puts, such as shared secrets from a Diffie-Hellman key exchange. It is
specifically not designed to be secure for low-entropy inputs such as
passwords.

HKDF exists to give people an appropriate, off-the-shelf key deriva-
tion function. Previously, key derivation was often something that was
done ad hoc for a particular standard. Usually these ad hoc solutions did
not have the extra provisions HKDF does, such as salts or the optional
info parameter (which we’ll discuss later in this section); and that’s only

CHAPTER 13. KEY DERIVATION FUNCTIONS 159

in the best case scenario where the KDF wasn’t fundamentally broken
to begin with.

HKDF is based on HMAC. Like HMAC, it is a generic construc-
tion that uses hash functions, and can be built using any cryptographi-
cally secure hash function you want.

A closer look at HKDF

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

HKDF consists of two phases. In the first phase, called the extraction
phase, a fixed-length key is extracted from the input entropy. In the
second phase, called the expansion phase, that key is used to produce a
number of pseudorandom keys.

The extraction phase

The extraction phase is responsible for extracting a small amount of
data with a high entropy content from a potentially large amount of
data with a smaller entropy density.

The extraction phase just uses HMAC with a salt:

def extract(salt, data):

return hmac(salt, data)

CHAPTER 13. KEY DERIVATION FUNCTIONS 160

The salt value is optional. If the salt is not specified, a string of zeroes
equal to the length of the hash function’s output is used. While the salt
is technically optional, the designers stress its importance, because it
makes the independent uses of the key derivation function (for example,
in different applications, or with different users) produce independent
results. Even a fairly low-entropy salt can already contribute signif-
icantly to the security of the key derivation function. [31] [30]

The extraction phase explains why HKDF is not suitable for de-
riving keys from passwords. While the extraction phase is very good
at concentrating entropy, it is not capable of amplifying entropy. It is
designed for compacting a small amount of entropy spread out over
a large amount of data into the same amount of entropy in a small
amount of data, but is not designed for creating a set of keys that are
difficult to compute in the face of a small amount of available entropy.
There are also no provisions for making this phase computationally
intensive. [31]

In some cases, it is possible to skip the extraction phase, if the
shared secret already has all the right properties, for example, if it is a
pseudorandom string of sufficient length, and with sufficient entropy.
However, sometimes this should not be done at all, for example when
dealing with a Diffie-Hellman shared secret. The RFC goes into slightly
more detail on the topic of whether or not to skip this step; but it is
generally inadvisable. [31]

The expansion phase

In the expansion phase, the random data extracted from the inputs in
the extraction phase is expanded into as much data as is required.

CHAPTER 13. KEY DERIVATION FUNCTIONS 161

The expansion step is also quite simple: chunks of data are produced
using HMAC, this time with the extracted secret, not with the public
salt, until enough bytes are produced. The data being HMACed is the
previous output (starting with an empty string), an ”info”parameter (by
default also the empty string), and a counter byte that counts which
block is currently being produced.

def expand(key, info=””):

”””Expands the key, with optional info.”””

output = ””

for byte in map(chr, range(256)):

output = hmac(key, output + info + byte)

yield output

def get_output(desired_length, key, info=””):

”””Collects output from the expansion step until enough

has been collected; then returns that output.”””

outputs, current_length = [], 0

for output in expand(key, info):

outputs.append(output)

current_length += len(output)

if current_length >= desired_length:

break

else:

This block is executed when the for loop *isn’t*

terminated by the “break“ statement, which

happens when we run out of “expand“ outputs

CHAPTER 13. KEY DERIVATION FUNCTIONS 162

before reaching the desired length.

raise RuntimeError(”Desired length too long”)

return ””.join(outputs)[:desired_length]

Like the salt in the extraction phase, the ”info” parameter is entirely
optional, but can actually greatly increase the security of the application.
The ”info” parameter is intended to contain some application-specific
context in which the key derivation function is being used. Like the salt,
it will cause the key derivation function to produce different values in
different contexts, further increasing its security. For example, the info
parameter may contain information about the user being dealt with,
the part of the protocol the key derivation function is being executed
for or the like. [31]

14

Random number generators

The generation of random numbers is too important
to be left to chance. Robert R. Coveyou

14.1 Introduction

Many cryptographic systems require random numbers. So far, we’ve
just assumed that they’re available. In this chapter, we’ll go more in
depth about the importance and mechanics of random numbers in
cryptographic systems.

Producing random numbers is a fairly intricate process. Like with
so many other things in cryptography, it’s quite easy to get it completely
wrong but have everything look completely fine to the untrained eye.

There are three categories of random number generation that we’ll
consider separately:

163

CHAPTER 14. RANDOM NUMBER GENERATORS 164

• True random number generators

• Cryptographically secure pseudorandom number generators

• Pseudorandom number generators

14.2 True random number generators

Any one who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.

John von Neumann

John von Neumann, father of the modern model of computing,
made an obvious point. We can’t expect to produce random num-
bers using predictable, deterministic arithmetic. We need a source of
randomness that isn’t a consequence of deterministic rules.

True random number generators get their randomness from physi-
cal processes. Historically, many systems have been used for producing
such numbers. Systems like dice are still in common use today. How-
ever, for the amount of randomness we need for practical cryptographic
algorithms, these are typically far too slow, and often quite unreliable.

We’ve since come up with more speedy and reliable sources of
randomness. There are several categories of physical processes that are
used for hardware random number generation:

• Quantum processes

• Thermal processes

• Oscillator drift

CHAPTER 14. RANDOM NUMBER GENERATORS 165

• Timing events

Keep in mind that not all of these options necessarily generate
high-quality, truly random numbers. We’ll elaborate further on how
they can be applied successfully anyway.

Radioactive decay

One example of a quantum physical process used to produce random
numbers is radioactive decay. We know that radioactive substances will
slowly decay over time. It’s impossible to know when the next atom will
decay; that process is entirely random. Detecting when such a decay
has occurred, however, is fairly easy. By measuring the time between
individual decays, we can produce random numbers.

Shot noise

Shot noise is another quantum physical process used to produce random
numbers. Shot noise is based on the fact that light and electricity are
caused by the movement of indivisible little packets: photons in the
case of light, and electrons in the case of electricity.

Nyquist noise

An example of a thermal process used to produce random numbers
is Nyquist noise. Nyquist noise is the noise that occurs from charge
carriers (typically electrons) traveling through a medium with a certain
resistance. That causes a tiny current to flow through the resistor (or,
alternatively put, causes a tiny voltage difference across the resistor).

CHAPTER 14. RANDOM NUMBER GENERATORS 166

i =

√
4kBT∆f

R

v =
√

4kBTR∆f

These formulas may seem a little scary to those who haven’t seen the
physics behind them before, but don’t worry too much: understanding
them isn’t really necessary to go along with the reasoning. These formu-
las are for the root mean square. If you’ve never heard that term before,
you can roughly pretend that means ”average”. ∆f is the bandwidth, T
is the temperature of the system in Kelvins, kB is Boltzmann’s constant.

As you can see from the formula, Nyquist noise is thermal, or
temperature-dependent. Fortunately, an attacker generally can’t use
that property to break the generator: the temperature at which it would
become ineffective is so low that the system using it has probably already
failed at that point.

By evaluating the formula, we can see that Nyquist noise is quite
small. At room temperature with reasonable assumptions (10 kHz
bandwidth and a 1kΩ resistor), the Nyquist voltage is in the order of
several hundred nanovolts. Even if you round up liberally to a microvolt
(a thousand nanovolts), that’s still a thousandth of a thousandth of a
volt, and even a tiny AA battery produces 1.5V.

While the formulas describe the root mean square, the value you
can measure will be randomly distributed. By repeatedly measuring
it, we can produce high-quality random numbers. For most practical
applications, thermal noise numbers are quite high quality and relatively
unbiased.

CHAPTER 14. RANDOM NUMBER GENERATORS 167

TODO:we’ve never actually explained the word entropy; ”resistance
an attacker perceives” is necessary in a good definition

TODO: explain synchronous stream ciphers as CSPRNGs

14.3 Cryptographically secure pseudorandom
generators

While we’ll see several examples of cryptographically secure pseudo-
random generators in the next few sections, keep in mind that they are
all just algorithms that could be used. As an application developer, you
should never be making a choice between one of them.

Instead, in the few cases you really want to pick a random number
manually, you should always use the cryptographically secure random
number generator provided by your operating system: /dev/urandom
on *NIX (Linux, BSDs, and OS X), or CryptGenRandom on Windows.
Python provides handy interfaces to these in the form of os.urandom
and random.SystemRandom.

While they can be implemented securely, try to avoid using userspace
cryptographically secure random number generators such as the one
in OpenSSL.There are far more things that can go wrong with them,
usually involving their internal state: either they remain uninitialized,
poorly initialized, or end up re-using the same state in different loca-
tions. In all of these cases, the resulting cryptosystem is completely and
utterly broken.

TODO: talk about the FUD in the Linux man page for urandom

CHAPTER 14. RANDOM NUMBER GENERATORS 168

14.4 Yarrow

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

Since this is a specific cryptographically secure
pseudorandom number generator algorithm, you don’t actually need to
know how it works to write good software. Just use urandom .

The Yarrow algorithm is a cryptographically secure pseudorandom
number generator.

TODO: actually explain Yarrow
This algorithm is used as the CSPRNG for FreeBSD, and was

inherited by Mac OS X. On both of these operating systems, it’s used
to implement /dev/random. Unlike on Linux, /dev/urandom is just an
alias for /dev/random.

14.5 Blum Blum Shub

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

Since this is a specific cryptographically secure
pseudorandom number generator algorithm, you don’t actually need to
know how it works to write good software. Just use urandom .

CHAPTER 14. RANDOM NUMBER GENERATORS 169

TODO: explain this, and why it’s good (provable), but why we don’t
use it (slow)

14.6 Dual_EC_DRBG

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

Since this is a specific cryptographically secure
pseudorandom number generator algorithm, you don’t actually need to
know how it works to write good software. Just use urandom .

Dual_EC_DRBG is a NIST standard for a cryptographically secure pseu-
dorandom bit generator. It sparked a large amount of controversy:
despite being put forth as an official, federal cryptographic standard, it
quickly became evident that it wasn’t very good.

Cryptanalysis eventually demonstrated that the standard could
contain a back door hidden in the constants specified by the standard,
potentially allowing an unspecified attacker to completely break the
random number generator.

Several years afterwards, leaked documents suggested a backdoor in
an unnamed NIST standard released in the same year as Dual_EC_DRBG,
fueling the suspicions further. This lead to an official recommenda-
tion from the standards body to stop using the standard, which was
previously unheard of under such circumstances.

CHAPTER 14. RANDOM NUMBER GENERATORS 170

Background

For a long time, the official standards produced by NIST lacked good,
modern cryptographically secure pseudorandom number generators.
It had a meager choice, and the ones that had been standardized had
several serious flaws.

NIST hoped to address this issue with a new publication called
SP 800-90, that contained several new cryptographically secure pseu-
dorandom number generators. This document specified a number of
algorithms, based on different cryptographic primitives:

1. Cryptographic hash functions

2. HMAC

3. Block ciphers

4. Elliptic curves

Right off the bat, that last one jumps out. Using elliptic curves
for random number generation was unusual. Standards like these are
expected to be state-of-the-art, while still staying conservative. Elliptic
curves had been considered before in an academic context, but that was
a far cry from being suggested as a standard for common use.

There is a second reason elliptic curves seem strange. HMAC and
block ciphers are obviously symmetric algorithms. Hash functions have
their applications in asymmetric algorithms such as digital signatures,
but aren’t themselves asymmetric. Elliptic curves, on the other hand, are
exclusively used for asymmetric algorithms: signatures, key exchange,
encryption.

CHAPTER 14. RANDOM NUMBER GENERATORS 171

That said, the choice didn’t come entirely out of the blue. A choice
for a cryptographically secure pseudorandom number generator with a
strong number-theoretical basis isn’t unheard of: Blum Blum Shub is a
perfect example. Those generators are typically much slower than the
alternatives. Dual_EC_DRBG, for example, is three orders of magnitude
slower than its peers presented in the same standard. The idea is that
the extra confidence inspired by the stronger mathematical guarantees
is worth the performance penalty. For example, we’re fairly confident
that factoring numbers is hard, but we’re a lot less sure about our hash
functions and ciphers. Rivest Shamir Adleman (RSA) came out in
1977 and has stood the test of time quite well since then. DES came
out two years later, and is now considered completely broken. MD4
and MD5 came out over a decade later, and are completely broken as
well.

The problem is, though, that the standard didn’t actually provide
the security proof. The standard specifies the generator but then merely
suggests that it would be at least as hard as solving the elliptic curve
discrete log problem. Blum Blum Shub, by contrast, has a proof that
shows that breaking it is at least as hard as solving the quadratic residu-
osity problem. The best algorithm we have for that is factoring numbers,
which we’re fairly sure is pretty hard.

The omission of the proof is a bit silly, because there’s no reason
you’d use a pseudorandom number generator as slow as Dual_EC_DRBG
unless you had proof that you were getting something in return for the
performance hit.

Cryptographers later did the homework that NIST should have pro-
vided in the specification[40][15]. Those analyses quickly highlighted

CHAPTER 14. RANDOM NUMBER GENERATORS 172

s r

φ(rP)

φ(sP) φ(rQ) Θ

a few issues.

A quick overview of the algorithm

The algorithm consists of two parts:

1. Generating pseudorandom points on the elliptic curve, which
are turned into the internal state of the generator;

2. Turning those points into pseudorandom bits.

We’ll illustrate this graphically, with an illustration based on the
work by Shumow and Ferguson, two cryptographers who highlighted
some of the major issues with this algorithm:

Throughout the algorithm, φ is a function that takes a curve point
and turns it into an integer. The algorithm needs two given points on
the curve: P and Q. These are fixed, and defined in the specification.
The algorithm has an internal state s. When producing a new block of
bits, the algorithm turns s into a different value r using the φ function
and elliptic curve scalar multiplication with P :

r = φ(sP)

CHAPTER 14. RANDOM NUMBER GENERATORS 173

That value, r, is used both for producing the output bits and updat-
ing the internal state of the generator. In order to produce the output
bits, a different elliptic curve point, Q, is used. The output bits are
produced by multiplying r with Q, and running the result through a
transformation θ:

o = θ(φ(rQ))

In order to perform the state update, r is multiplied with P again,
and the result is converted to an integer. That integer is used as the new
state s.

s = φ(rP)

Issues and question marks

First of all, φ is extremely simple: it just takes the x coordinate of the
curve point, and discards the y coordinate. That means that it’s quite
easy for an attacker who sees the output value of φ to find points that
could have produced that value. In itself, that’s not necessarily a big
deal; but, as we’ll see, it’s one factor that contributes to the possibility
of a backdoor.

Another flaw was shown where points were turned into pseudoran-
dom bits. The θ function simply discards the 16 most significant bits.
Previous designs discarded significantly more: for 256-bit curves such
as these, they discarded somewhere in the range of 120 and 175 bits.

Failing to discard sufficient bits gave the generator a small bias.
The next-bit property was violated, giving attackers a better than 50%
chance of guessing the next bit correctly. Granted, that chance was only

CHAPTER 14. RANDOM NUMBER GENERATORS 174

about one in a thousand better than 50%; but that’s still unacceptable for
what’s supposed to be the state-of-the-art in cryptographically secure
pseudorandom number generators.

Discarding only those 16 bits has another consequence. Because
only 16 bits were discarded, we only have to guess 216 possibilities to
find possible values of φ(rQ) that produced the output. That is a very
small number: we can simply enumerate all of them. Those values are
the outputs of φ, which as we saw just returns the x coordinate of a
point. Since we know it came from a point on the curve, we just have
to check if our guess is a solution for the curve equation:

y2 ≡ x3 + ax+ b (mod p)

The constants a, b, p are specified by the curve. We’ve just guessed
a value for x, leaving only one unknown, y. We can solve that quite ef-
ficiently. We compute the right hand side and see if it’s a perfect square:
y2 ≡ q ≡

√
x3 + ax+ b (mod p). If it is, A = (x,

√
q) = (x, y) is a

point on the curve. This gives us a number of possible points A, one of
which is rQ used to produce the output.

This isn’t a big deal at face value. To find the state of the algorithm,
an attacker needs to find r, so they can compute s. They still need to
solve the elliptic curve discrete log problem to find r from rQ, given Q.
We’re assuming that problem is hard.

Keep in mind that elliptic curves are primitives used for asymmetric
encryption. That problem is expected to be hard to solve in general, but
what if we have some extra information? What if there’s a secret value
e so that eQ = P ?

Let’s put ourselves in the shoes of an attacker knowing e. We repeat

CHAPTER 14. RANDOM NUMBER GENERATORS 175

our math from earlier. One of those points A we just found is the rQ
we’re looking for. We can compute:

φ(eA) ≡ φ(erQ) ≡ φ(rP) (mod p)

That last step is a consequence of the special relationship between
e, P,Q. That’s pretty interesting, because φ(rP) is exactly the compu-
tation the algorithm does to compute s, the new state of the algorithm!
That means that an attacker that knows e can, quite efficiently, compute
the new state s from any output o, allowing them to predict all future
values of the generator!

This assumes that the attacker knows which A is the right A. Be-
cause only 16 bits were discarded there are only 16 bits left for us
to guess. That gives us 216 candidate x coordinates. Experimentally,
we find that roughly half of the possible x coordinates correspond to
points on the curve, leaving us with 215 possible curve points A, one of
which is rQ. That’s a pretty small number for a bit of computer-aided
arithmetic: plenty small for us to try all options. We can therefore say
that an attacker that does know the secret value e most definitely can
break the generator.

So, we’ve now shown that if there is a magical e for which eQ = P ,
and you can pick P and Q (and you don’t have to explain where you
got them from), that you could break the generator. How do you pick
such values?

To demonstrate just how possible it is, the researchers started from
the NIST curve’s P and p values, but came up with their own Q′. They
did this by starting with P , picking a random d (keeping it secret),
and setting Q′ = dP . The trick is that there’s an efficient algorithm

CHAPTER 14. RANDOM NUMBER GENERATORS 176

for computing e in eQ′ = P if you know the d in Q′ = dP . This is
the e we need for our earlier attack. When they tried this out, they
discovered that in all cases (that is, for many random d), seeing 32 bytes
of output was enough to determine the state s.

All of this, of course, only demonstrates that it is possible for the
specified values of P and Q to be special values with a secret back door.
It doesn’t provide any evidence that the actual values have a backdoor
in them. However, given that the standard never actually explains
how they got the magical value for Q, it doesn’t really inspire a lot of
confidence. Typically, cryptographic standards use ”nothing-up-my-
sleeve” numbers, such as the value of some constant such as π or the
natural logarithm base, e.

If someone does know the backdoor, the consequences are obviously
devastating. We’ve already argued for the necessity of cryptographi-
cally secure pseudorandom number generators: having a broken one
essentially means that all cryptosystems that use this generator are
completely and utterly defeated.

There are two ways one might try to fix this particular algorithm:

• Make the θ function more complex to invert, rather than just
discarding 16 bits. This makes it harder to find candidate points,
and hence, harder to perform the attack. One obvious way would
be to discard more bits. Another option would be to use a cryp-
tographically secure hash, or a combination of both.

• Generate random Q every time you start the algorithm, possibly
by picking a random d and setting Q = dP . Of course, d has
to be sufficiently large and truly random: if θ is unchanged, and

CHAPTER 14. RANDOM NUMBER GENERATORS 177

there’s only few values d can have, the attacker can just perform
the above attack for all values of d.

Both of these are really just band-aid solutions; it would be a much
better idea to just use a different algorithm altogether. These suggestions
don’t resolve the issue that it’s slow, exotic, and now a retracted standard.

Aftermath

TODO: Talk about RSA guy’s comments + snowden leaks

14.7 MersenneTwister

Mersenne Twister is a very common pseudorandom number generator.
It has many nice properties, such as high performance, a huge period1

of 219937 − 1 ≈ 4 · 106001, and it passes all but the most demanding
randomness tests. Despite all of these wonderful properties, it is not
cryptographically secure.

An in-depth look at the MersenneTwister

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

1The period of a pseudorandom number generator is how many random numbers
it produces before the entire sequence repeats.

CHAPTER 14. RANDOM NUMBER GENERATORS 178

To demonstrate why Mersenne Twister isn’t cryptographically secure,
we’ll take a look at how the algorithm works. Fortunately, it’s not very
complex.

The standard Mersenne Twister algorithm operates on an internal
state array S consisting of 624 unsigned 32-bit integers, and an index i
pointing to the current integer. It consists of three steps:

1. An optional initialization function, which produces an initial
state from a small random value called a seed.

2. A state generation function, which produces a new state from
the old state.

3. An extraction function, also called the tempering function, that
produces a random number from the current element of the state
(the element pointed at by the index i).

Whenever the extraction function is called, the index to the current
integer is incremented. When all of the current elements of the state
have been used to produce a number, the state initialization function is
called again. The state initialization function is also called right before
the first number is extracted.

So, to recap: the state is regenerated, then the extraction function
goes over each of the elements in the state, until it runs out. This process
repeats indefinitely.

TODO: illustrate
We’ll look at each of the parts briefly. The exact workings of them

is outside the scope of this book, but we’ll look at them just long
enough to get some insight into why Mersenne Twister is unsuitable
as a cryptographically secure random number generator.

CHAPTER 14. RANDOM NUMBER GENERATORS 179

The initialization function

The initialization function creates an instance of Mersenne Twister’s
state array, from a small initial random number called a seed.

The array starts with the seed itself. Then, each next element is
produced from a constant, the previous element, and the index of the
new element. Elements are produced until there are 624 of them.

Here’s the Python source code:

def initialize_state(seed):

state = [seed]

for i in xrange(1, 624):

prev = state[-1]

elem = 0x6c078965 * (prev ^ (prev » 30)) + i

state.append(uint32(elem))

return state

For those of you who haven’t worked with Python or its bitwise
operators:

• » and « are right-shift and left-shift

• & is binary AND: 0&0 = 0&1 = 1&0 = 0, and 1&1 = 1.

• ^ is binary XOR, ^= XORs and assigns the result to the name
on the left-hand side, so x ^= k is the same thing as x = x ^ k.

REVIEW: Bitwise arithmetic appendix?

CHAPTER 14. RANDOM NUMBER GENERATORS 180

The state regeneration function

The state regeneration function takes the current state and produces
a new state. It is called right before the first number is extracted, and
every time all 624 elements of the state have been used up.

The Python source code for this function is fairly simple. Note that
it modifies the state array in place, instead of returning a new one.

def regenerate(s):

for i in xrange(624):

y = s[i] & 0x80000000

y += s[(i + 1) % 624] & 0x7fffffff

z = s[(i + 397) % 624]

s[i] = z ^ (y » 1)

if y % 2:

s[i] ^= 0x9908b0df

The % in an expression like s[(i + n) % 624] means that a next
element of the state is looked at, wrapping around to the start of the
state array if there is no next element.

The tempering function

The tempering function is applied to the current element of the state
before returning it as the produced random number. It’s easier to just
show the code instead of explaining how it works:

CHAPTER 14. RANDOM NUMBER GENERATORS 181

_TEMPER_MASK_1 = 0x9d2c5680

_TEMPER_MASK_2 = 0xefc60000

def temper(y):

y ^= uint32(y » 11)

y ^= uint32((y « 7) & _TEMPER_MASK_1)

y ^= uint32((y « 15) & _TEMPER_MASK_2)

y ^= uint32(y » 18)

return y

It may not be obvious, especially if you’re not used to binary arith-
metic, but this function is bijective or one-to-one: each 32 bit integer
input maps to exactly one output, and vice versa: for each 32 bit integer
we get as an output there was exactly one 32 bit integer it could have
come from.

Because the tempering function is one-to-one, there is an inverse
function: a function that gives you the untempered equivalent of a
number. It may not be obvious to you how to construct that function
unless you’re a bitwise arithmetic wizard, but that’s okay; in the worst
case scenario we could still brute-force it. Suppose we just try every
single 32 bit integer, and remember the result in a table. Then, when we
get a result, we look it up in the table, and find the original. That table
would have to be at least 232 · 32 bits in length, or a good 17 gigabytes;
big, but not impossibly so.

Fortunately, there’s a much simpler method to compute the inverse
of the temper function. We’ll see why that’s interesting when we
evaluate the cryptographic security of the Mersenne Twister in the next
section. For those interested in the result, the untempering function

CHAPTER 14. RANDOM NUMBER GENERATORS 182

looks like this:

def untemper(y):

y ^= y » 18

y ^= ((y « 15) & _TEMPER_MASK_2)

y = _undo_shift_2(y)

y = _undo_shift_1(y)

return y

def _undo_shift_2(y):

t = y

for _ in xrange(5):

t «= 7

t = y ^ (t & _TEMPER_MASK_1)

return t

def _undo_shift_1(y):

t = y

for _ in xrange(2):

t »= 11

t ^= y

return t

CHAPTER 14. RANDOM NUMBER GENERATORS 183

Cryptographic security

Remember that for cryptographic security, it has to be impossible to
predict future outputs or recover past outputs given present outputs.
The Mersenne Twister doesn’t have that property.

It’s clear that pseudorandom number generators, both those cryp-
tographically secure and those that aren’t, are entirely defined by their
internal state. After all, they are deterministic algorithms: they’re just
trying very hard to pretend not to be. Therefore, you could say that
the principal difference between cryptographically secure and ordinary
pseudorandom number generators is that the cryptographically secure
ones shouldn’t leak information about their internal state, whereas it
doesn’t matter for regular ones.

Remember that in MersenneTwister, a random number is produced
by taking the current element of the state, applying the tempering func-
tion, and returning the result. We’ve also seen that the tempering
function has an inverse function. So, if I can see the output of the algo-
rithm and apply the inverse of the tempering function, I’ve recovered
one element out of the 624 in the state.

Suppose that I happen to be the only person seeing the outputs of
the algorithm, and you begin at the start of the state, such as with a
fresh instance of the algorithm, that means that I can clone the state
by just having it produce 624 random numbers.

Even if an attacker doesn’t see all 624 numbers, they can often still
recreate future states, thanks to the simple relations between past states
and future states produced by the state regeneration function.

Again, this is not a weakness of Mersenne Twister. It’s designed to
be fast and have strong randomness properties. It is not designed to

CHAPTER 14. RANDOM NUMBER GENERATORS 184

be unpredictable, which is the defining property of a cryptographically
secure pseudorandom number generator.

Part III

Complete cryptosystems

185

15

SSL andTLS

15.1 Description

SSL, short for Secure Socket Layer, is a cryptographic protocol orig-
inally introduced by Netscape Communications1 for securing traffic
on the Web. The standard is now superseded by TLS (Transport Layer
Security), a standard publicized in RFCs by the IETF.The term SSL
is still commonly used, even when the speaker actually means a TLS
connection. From now on, this book will only use the term TLS, unless
we really mean the old SSL standard.

Its first and foremost goal is to transport bytes securely, over the
Internet or any other insecure medium. [19] It’s a hybrid cryptosystem:
it uses both symmetric and asymmetric algorithms in unison. For

1For those too young to remember, Netscape is a company that used to make
browsers.

186

CHAPTER 15. SSL AND TLS 187

example, asymmetric algorithms such as signature algorithms can be
used to authenticate peers, while public key encryption algorithms
or Diffie-Hellman exchanges can be used to negotiate shared secrets
and authenticate certificates. On the symmetric side, stream ciphers
(both native ones and block ciphers in a mode of operation) are used
to encrypt the actual data being transmitted, and MAC algorithms are
used to authenticate that data.

TLS is the world’s most common cryptosystem, and hence probably
also the most studied. Over the years, many flaws have been discov-
ered in SSL and TLS, despite many of the world’s top cryptographers
contributing to and examining the standard2. As far as we know, the
current versions of TLS are secure, or at least can be configured to be
secure.

15.2 Handshakes

TODO: explain a modern TLS handshake

Downgrade attacks

SSL 2.0 made the mistake of not authenticating handshakes. This
made it easy to mount downgrade attacks. A downgrade attack is a
man-in-the-middle attack where an attacker modifies the handshake
messages that negotiate which ciphersuite is being used. That way, he
can force the clients to set up the connection using an insecure block
cipher, for example.

2In case I haven’t driven this point home yet: it only goes to show that designing
cryptosystems is hard, and you probably shouldn’t do it yourself.

CHAPTER 15. SSL AND TLS 188

Due to cryptographic export restrictions at the time, many ciphers
were only 40 or 56 bit. Even if the attacker couldn’t break the best
encryption both client and server supported, he could probably break
the weakest, which is all that is necessary for a downgrade attack to
succeed.

This is one of the many reasons that there is an explicit RFC[42]
prohibiting new TLS implementations from having SSL v2.0 support.

15.3 Certificate authorities

TLS certificates can be used to authenticate peers, but how do we
authenticate the certificate? My bank may very well have a certificate
claiming to be that particular bank, but how do I know it’s actually my
bank, and not just someone pretending to be my bank? Why should I
trust this particular certificate? As we’ve seen when we discussed these
algorithms, anyone can generate as many key pairs as they’d like. There’s
nothing stopping someone from generating a key pair pretending to be
your bank.

When someone actually tries to use a certificate to impersonate
a bank, real browsers don’t believe them. They notify the user that
the certificate is untrusted. They do this using the standard TLS trust
model of certificate authorities. TLS clients come with a list of trusted
certificate authorities, commonly shipped with your operating system
or your browser. These are special, trusted certificates, that are carefully
guarded by their owners.

For a fee, these owners will use their certificate authority to sign
other certificates. The idea is that the certificate authority wouldn’t sign

CHAPTER 15. SSL AND TLS 189

a certificate for Facebook or a bank or anyone else, unless you could
prove you’re actually them.

When a TLS client connects to a server, that server provides a
certificate chain. Typically, their own certificate is signed by an inter-
mediary CA certificate, which is signed by another, and another, and
one that is signed by a trusted root certificate authority. Since the client
already has a copy of that root certificate, they can verify the signature
chain starting with the root.

Your fake certificate doesn’t have a chain leading up to a trusted
root certificate, so the browser rejects it.

TODO: Explain why this is a total racket

15.4 Self-signed certificates

15.5 Client certificates

In TLS, certificates are usually only used to identify the server. This
satisfies a typical use case: users want to communicate securely with
their banks and e-mail providers, and the certificate authenticates the
service they’re talking to. The service usually authenticates the user
using passwords, and, occasionally, two-factor authentication.

In public-key schemes we’ve seen so far, all peers typically had one
or more key pairs of their own. There’s no reason users can’t have their
own certificates, and use them to authenticate to the server. The TLS
specification explicitly supports client certificates. This feature is only
rarely used, even though it clearly has very interesting security benefits.

The main reason for that is probably rooted in the poor user experi-
ence. There are no systems that rely on client certificates that are easy

CHAPTER 15. SSL AND TLS 190

to use for non-technical people. Since there are few such systems, even
tech-savvy people don’t know about them, which means new systems
aren’t created.

Client certificates are a great solution for when you control both
ends of the wire and want to securely authenticate both peers in a TLS
connection. By producing your own certificate authority, you can even
sign these client certificates to authenticate them.

15.6 Perfect forward secrecy

Historically, the most common way to agree on the pre-master secret
is for the client to select a random number and encrypt it, typically
using RSA. This has a few nice properties. For example, it means
the server can make do with less entropy: since the random bits are
handed to the server by the client, the server doesn’t need to produce
any cryptographically random bits. It also makes the handshake slightly
faster, since there’s no need for back-and-forth communication to agree
on a shared secret.

However, it has one major flaw. Suppose an attacker gets access to
the server’s private key. Perhaps they managed to factor the modulus
of the RSA key, or perhaps they broke in and stole it, or perhaps they
used legal force to get the owner to hand over the key. Regardless of
how they acquired it, getting access to the key allows the attacker to
decrypt all past communication. The key allows them to decrypt the
encrypted pre-master secrets, which allows them to derive all of the
symmetric encryption keys, and therefore decrypt everything.

There are obvious alternatives to this scheme. We’ve already seen
Diffie-Hellman key exchange, allowing two peers to agree on secret

CHAPTER 15. SSL AND TLS 191

keys over an insecure medium. TLS allows for peers to agree on the
pre-master secret using a Diffie-Hellman exchange, either based on
discrete logs or elliptic curves.

Assuming both peers discard the keys after use like they’re supposed
to, getting access to the secret keys wouldn’t allow an attacker to decrypt
previous communication. That property is called perfect forward secrecy.
The term ”perfect” is a little contested, but the term ”forward”means
that communications can’t be decrypted later if the long-term keys
(such as the server’s private key) fall into the wrong hands.

Of course, this is only true if Diffie-Hellman exchanges are secure.
If an attacker has a significant mathematical and computational advan-
tage over everyone else, such as an algorithm for solving the discrete log
problem more efficiently than thought possible, combined with many
data centers filled with number-crunching computers, it’s possible that
they’ll break the key exchange itself.

15.7 Attacks

As with most attacks, attacks on TLS can usually be grouped into two
distinct categories:

1. Attacks on the protocol itself, such as subverting the CA mecha-
nism;

2. Attacks on a particular implementation or cipher, such as crypt-
analytic attacks exploiting weaknesses in RC4, or timing attacks
in a particular AES implementation.

CHAPTER 15. SSL AND TLS 192

Unfortunately, SSL/TLS has had many successful attacks in both
categories. This section is particularly about the latter.

CRIME and BREACH

CRIME3 is an attack by the authors of BEAST. It’s an innovative side
channel attack that relies on TLS compression leaking information
about secrets in the plaintext. In a related attack called BREACH4, the
attackers accomplish the same effect using HTTP compression. That
was predicted by the authors of the original paper, but the BREACH
authors were the first to demonstrate it as a practical attack. The
BREACH attack was more practically applicable, though: HTTP
compression is significantly more common than TLS compression.

Both of these rely on encryption of a compressed plaintext, and
their mechanisms are virtually identical: only the specific details related
to HTTP compression or TLS compression are relevant. The largest
difference is that with TLS compression, the entire stream can be
attacked; with HTTP compression, only the body is compressed, so
HTTP headers are safe. Since the attacks are otherwise extremely
similar, we’ll just talk about how the attack works in the abstract, by
explaining how attackers can learn information about the plaintext if it
is compressed before encryption.

The most common algorithm used to compress both HTTP and
TLS[24] is called DEFLATE. The exact mechanics of DEFLATE
aren’t too important, but the important feature is that byte sequences
that occur more than once can be efficiently stored. When a byte

3Compression Ratio Info-leak Made Easy
4Browser Reconnaissance and Exfiltration via Adaptive Compression of Hypertext

CHAPTER 15. SSL AND TLS 193

sequence recurs5, instead of recording the same sequence, a reference is
provided to the previous sequence: instead of repeating the sequence,
it says ”go back and look at the thing I wrote N bytes ago”.

Suppose an attacker can control the plaintext. For example, the
attacker injects an invisible iframe6 or some JavaScript code that fires
off many requests. The attacker needs some way to inject their guess
of the secret so that their guess occurs in the plaintext, such as the
query parameters7. Usually, they can prefix their guess with something
known. Suppose they’re trying to intercept an authentication token
being supplied in the body of the web page:

<input type=”hidden”

name=”csrf-token”

value=”TOKEN_VALUE_HERE”>

… they can prefix the guess with the known part of that. In this
case, it’s a cross-site request forgery (CSRF) token; a random token
selected by the server and given to the client. This token is intended to
prevent malicious third party websites from using the ambient authority
present in the browser (such as session cookies) to make authenticated
requests. Without a CSRF token, a third party website might just
make a request to the vulnerable website; the web browser will provide
the stored cookie, and the vulnerable website will mistake that for an
authenticated request.

5Within limits; specifically within a sliding window, usually 32kB big. Otherwise,
the pointers would grow bigger than the sequences they’re meant to compress.

6An iframe is a web page embedded within a page.
7The key-value pairs in a URL after the question mark, e.g. the x=1&y=2 in

http://example.test/path?x=1&y=2.

CHAPTER 15. SSL AND TLS 194

The attacker makes guesses at the value of the token, starting with
the first byte, and moving on one byte at a time.8 When they guess a
byte correctly, the ciphertext will be just a little shorter: the compression
algorithm will notice that it’s seen this pattern before, and be able to
compress the plaintext before encrypting. The plaintext, and hence
the compressed ciphertext, will therefore be smaller. They can do this
directly when the connection is using a stream cipher or a similar
construction such as CTR mode, since they produce ciphertexts that
are exactly as long as the plaintexts. If the connection is using a block-
oriented mode such as CBC mode, the difference might get lost in the
block padding. The attacker can solve that by simply controlling the
prefix so that the difference in ciphertext size will be an entire block.

Once they’ve guessed one byte correctly, they can move on to the
next byte, until they recover the entire token.

This attack is particularly interesting for a number of reasons. Not
only is it a completely new class of attack, widely applicable to many
cryptosystems, but compressing the plaintext prior to encryption was
actively recommended by existing cryptographic literature. It doesn’t
require any particularly advanced tools: you only need to convince the
user to make requests to a vulnerable website, and you only need to be
able to measure the size of the responses. It’s also extremely effective:
the researchers that published BREACH report being able to extract
secrets, such as CSRF tokens, within one minute.

In order to defend against CRIME, disable TLS compression. This
is generally done in most systems by default. In order to defend against
BREACH, there’s a number of possible options:

8They may be able to move more quickly than just one byte at a time, but this is
the simplest way to reason about.

CHAPTER 15. SSL AND TLS 195

• Don’t allow the user to inject arbitrary data into the request.

• Don’t put secrets in the response bodies.

• Regenerate secrets such as CSRF tokens liberally, for example,
each request.

It’s a bad idea to simply unconditionally turn off HTTP compres-
sion. While it does successfully stop the attack, HTTP compression is
a critical tool for making the Web faster.

Web apps that consist of a static front-end (say, using HTML5,
JS, CSS) and that only operate using an API, say, JSON over REST,
are particularly easy to immunize against this attack. Just disable com-
pression on the channel that actually contains secrets. It makes things
slower, of course, but at least the majority of data can still be served
over a content distribution network (CDN).

15.8 HSTS

HTTP Strict Transport Security (HSTS) is a way for web servers to
communicate that what they’re saying should only ever be transferred
over a secure transport. In practice, the only secure transport that is
ever used for HTTP is TLS.

Using HSTS is quite simple; the web server just adds an extra
Strict-Transport-Security header to the response. The header value
contains a maximum age (max-age), which determines how long into
the future the browser can trust that this website will be HSTS-enabled.
This is typically a large value, such as a year. Browsers successfully
remembering that a particular host is HSTS-enabled is very important

CHAPTER 15. SSL AND TLS 196

to the effectiveness of the scheme, as we’ll see in a bit. Optionally,
the HSTS header can include the includeSubDomains directive, which
details the scope of the HSTS policy. [23]

There are several things that a conforming web browser will do
when communicating with an HSTS-enabled website:

• Whenever there is any attempt to make any connection to this
website, it will always be done over HTTPS.The browser does
this completely by itself, before making the request to the website.

• If there is an issue setting up a TLS connection, the website will
not be accessible, instead of simply displaying a warning.

Essentially, HSTS is a way for websites to communicate that they
only support secure transports. This helps protect the users against
all sorts of attacks including both passive eavesdroppers (that were
hoping to see some credentials accidentally sent in plaintext), and active
man-in-the-middle attacks such as SSL stripping.

HSTS also defends against mistakes on the part of the web server.
For example, a web server might accidentally pull in some executable
code, such as some JavaScript, over an insecure connection. An active
attacker that can intercept and modify that JavaScript would then have
complete control over the (supposedly secure) web site.

As with many TLS improvements, HSTS is not a panacea: it is
just one tool in a very big toolbox of stuff that we have to try and make
TLS more secure. HSTS only helps to ensure that TLS is actually
used; it does absolutely nothing to prevent attacks against TLS itself.

HSTS can suffer from a chicken-or-egg problem. If a browser has
never visited a particular HSTS-enabled website before, it’s possible

CHAPTER 15. SSL AND TLS 197

that the browser doesn’t know that the website is HSTS-enabled yet.
Therefore, the browser may still attempt a regular HTTP connection,
vulnerable to an SSL stripping attack. Some browsers have attempted
to mitigate this issue by having browsers come pre-loaded with a list of
HSTS websites.

15.9 Certificate pinning

Certificate pinning is an idea that’s very similar to HSTS, taken a little
further: instead of just remembering that a particular server promises to
support HTTPS, we’ll remember information about their certificates
(in practice,we’ll remember a hash of the public key). When we connect
to a server that we have some stored information about, we’ll verify
their certificates, making it much harder for an impostor to pretend to
be the website we’re connecting to using a different certificate.

Browsers originally implemented certificate pinning by coming
shipped with a list of certificates from large, high-profile websites. For
example,Google included whitelisted certificates for all of their services
in their Chrome browser.

15.10 Secure configurations

In this section, we are only talking about configuration options such
as which ciphers to use,TLS/SSL versions, etc. We’re specifically not
talking about TLS configurations in the sense of trust models, key
management, etc.

There are several issues with configuring TLS securely:

CHAPTER 15. SSL AND TLS 198

1. Often, the defaults are unsafe, and people are unaware that they
should be changed.

2. The things that constitute a secure TLS configuration can change
rapidly, because cryptanalysis and practical attacks are continu-
ously improving.

3. Old clients that still need to be supported sometimes mean that
you have to hang on to broken configuration options.

A practical example of some of these points coming together is the
BEAST attack. That attack exploited weaknesses in CBC ciphersuites
in TLSv1.0, which were parts of the default ciphersuite specifications
everywhere. Many people recommended defending against it by switch-
ing to RC4. RC4 was already considered cryptographically weak, later
cryptanalysis showed that RC4 was even more broken than previously
suspected. The attack had been known for years before being practically
exploited; it was already fixed in TLSv1.1 in 2006, years before the
BEAST paper being published. However,TLSv1.1 had not seen wide
adoption.

Good advice necessarily changes over time, and it’s impossible to
do so in a persistent medium such as a book. Instead, you should look
at continuously updated third party sources such as Qualys SSL Labs.
They provide tests for both SSL clients and servers, and extensive advice
on how to improve configurations.

That said, there are certainly some general things we want from a
TLS configuration.

TODO: say stuff we generally want from TLS configurations
TODO: http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01

https://www.ssllabs.com/
http://tools.ietf.org/html/draft-agl-tls-chacha20poly1305-01

16

OpenPGP and GPG

16.1 Description

OpenPGP is an open standard that describes a method for encrypting
and signing messages. GPG is the most popular implementation of
that standard1, available under a free software license.

Unlike TLS, which focuses on data in motion, OpenPGP focuses
on data at rest. A TLS session is active: bytes fly back and forth as
the peers set up the secure channel. An OpenPGP interaction is, by
comparison, static: the sender computes the entire message up front
using information shared ahead of time. In fact, OpenPGP doesn’t
insist that anything is sent at all: for example, it can be used to sign
software releases.

1GPG 2 also implements S/MIME,which is unrelated to the OpenPGP standard.
This chapter only discusses OpenPGP.

199

CHAPTER 16. OPENPGP AND GPG 200

Like TLS, OpenPGP is a hybrid cryptosystem. Users have key
pairs consisting of a public key and a private key. Public key algorithms
are used both for signing and encryption. Symmetric key algorithms
are used to encrypt the message body; the symmetric key itself is pro-
tected using public-key encryption. This also makes it easy to encrypt a
message for multiple recipients: only the secret key has to be encrypted
multiple times.

16.2 The web of trust

Earlier, we saw that TLS typically uses trusted root certificates to
establish that a particular peer is who they claim to be. OpenPGP
does not operate using such trusted roots. Instead, it relies on a system
called the Web of Trust: a friend-of-a-friend honor system that relies
on physical meetings where people verify identities.

The simplest case is a directly trusted key. If we meet up in person,
we can verify each other’s identities. Perhaps we know each other, or
perhaps we’d check some form of identification. Then, we sign each
other’s keys.

Because I know the key is yours, I know that you can read the
messages encrypted by it, and the other way around. Provided you don’t
share your key, I know that only you can read those messages. No-one
can replace my copy of your key, because they wouldn’t be able to forge
my signature on it.

There’s a direct trust link between the two of us, and we can com-
municate securely.

CHAPTER 16. OPENPGP AND GPG 201

A slightly more complicated case is when a friend of yours would
like to send me a message. We’ve never met: he’s never signed my key,
nor have I signed theirs. However, I have signed your key, and vice versa.
You’ve signed your friend’s key, and vice versa. Your friend can choose
to leverage your assertion that I’m indeed the person in possession of
that key you signed, and use that to communicate with me securely.

You might wonder how your friend would ever see signatures that
you placed on my key. This is because keys and signatures are typically

CHAPTER 16. OPENPGP AND GPG 202

uploaded to a network of key servers, making them freely available to
the world.

The above system can be extended to multiple layers of friends. It
relies in no small part in communities being linked by signatures, which
is why many community events include key signing parties, where
people sign each other’s keys. For large events, such as international
programming conferences, this system is very effective. The main weak-
ness in this system are ”islands” of trust: individuals or small groups
with no connections to the rest of the web.

Of course, this is only the default way to use OpenPGP. There’s
nothing stopping you from shipping a particular public key as a part of
a software package, and using that to sign messages or verify messages.
This is analogous to how you might want to ship a key with a client
certificate, or a custom root CA certificate, with TLS.

17

Off-The-Record Messaging
(OTR)

17.1 Description

Off-the-record (OTR) messaging is a protocol for securing instant mes-
saging communication between people[14]. It intends to be the online
equivalent of a private, real-life conversation. It encrypts messages, pre-
venting eavesdroppers from reading them. It also authenticates peers to
each other, so they know who they’re talking to. Despite authenticating
peers, it is designed to be deniable: participants can later deny to third
parties anything they said to each other. It is also designed to have
perfect forward secrecy: even a compromise of a long-term public key
pair doesn’t compromise any previous conversations.

203

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 204

The deniability and perfect forward secrecy properties are very
different from those of other systems such as OpenPGP. OpenPGP
intentionally guarantees non-repudiability. It’s a great property if you’re
signing software packages, talking on mailing lists or signing busi-
ness invoices, but the authors of OTR argue that those aren’t desir-
able properties for the online equivalent of one-on-one conversations.
Furthermore, OpenPGP’s static model of communication makes the
constant key renegotiation to facilitate OTR’s perfect forward secrecy
impossible.

OTR is typically configured opportunistically, which means that
it will attempt to secure any communication between two peers, if
both understand the protocol, without interfering with communication
where the other peer does not. The protocol is supported in many
different instant messaging clients either directly, or with a plugin.
Because it works over instant messages, it can be used across many
different instant messaging protocols.

A peer can signal that they would like to speak OTR with an
explicit message, called the OTR Query message. If the peer is just
willing to speak OTR but doesn’t require it, they can optionally invisibly
add that information to a plaintext message. That happens with a clever
system of whitespace tags: a bunch of whitespace such as spaces and
tab characters are used to encode that information. An OTR-capable
client can interpret that tag and start an OTR conversation; an client
that isn’t OTR-capable just displays some extra whitespace.

OTR uses many of the primitives we’ve seen so far:

• Symmetric key encryption (AES in CTR mode)

• Message authentication codes (HMAC with SHA-1)

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 205

• Diffie-Hellman key exchange

OTR also utilizes another mechanism, called the Socialist mil-
lionaire protocol (SMP), to check if peers arrived at the same shared
secret.

17.2 Key exchange

In OTR, Authenticated key exchange (AKE) relies heavily on Diffie-
Hellman key exchange, extended with a significant number of extra,
interlocking checks. The Diffie-Hellman exchange itself uses a fixed
1536-bit prime with a fixed generator g.

We suppose that two participants, named Alice and Bob want to
communicate and are willing to exchange sensitive data with each other.
Alice and Bob have a long-term DSA authentication key pair each,
which we’ll call (pA, sA) and (pB, sB) respectively.

The protocol also relies on a number of other primitives:

• A 128-bit block cipher. In OTR, this is always AES. In this
section, we’ll call block cipher encryption and decryption E and
D, respectively.

• A hash function, H . In OTR, this is SHA1.

• A message authentication code, M . In OTR, this is HMAC-
SHA1.

• A signing function, S.

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 206

Commit message

Initially Alice and Bob are in a protocol state where they wait for the
peer to initiate an OTR connection, and advertise their own capability
of speaking OTR.

Let’s suppose that Bob chooses to initiate an OTR conversation
with Alice. His client sends an OTR Commit Message, and then
transitions to a state where he waits for a reply from from Alice’s client.

To send a commit message, a client picks a random 128-bit value
r and a random 320-bit (or larger) Diffie-Hellman secret x. It then
sends E(r, gx) and H(gx) to the peer.

Key message

Alice’s client has received Bob’s client’s advertisement to start an OTR
session. Her client replies with a key message, which involves creating
a new Diffie-Hellman key pair. She picks a 320-bit (or larger) Diffie-
Hellman secret y and sends gy to Bob.

Reveal Signature Message

Now that Alice has sent her public Diffie-Hellman key, Bob can com-
plete his part of the Diffie-Hellman protocol. Alice can’t continue yet,
because she hasn’t seen Bob’s public key.

When we discussed Diffie-Hellman, we noted that it does not
authenticate the peer. Bob can compute a secret, but doesn’t know he’s
talking to Alice. As with TLS and other systems using Diffie-Hellman,
this problem is solved by authenticating the key exchange.

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 207

After verifying that Alice’s public key is a valid value, Bob compute
the shared secret s = (gy)x. Using a key derivation function, he
derives several keys from s: two AES keys c, c′, and four MAC keys
m1,m

′
1,m2,m

′
2.

He chooses an identification number iB for his current Diffie-
Hellman key pair (x, gx). This will be important once Alice and Bob
generate new key pairs,which they will do later on in the OTR protocol.

Bob computes:

MB = Mm1(g
x, gy, pB, iB)

XB = (pB, iB, S(pB,MB))

He sends Alice r,Ec(XB),Mm2(Ec(XB)).

Signature Message

Alice can now confirm she’s talking to Bob directly, because Bob signed
the authenticator for the exchange MB with his long-term DSA key.

Alice can now also compute the shared secret: Bob has sent her r,
which was previously used to encrypt Bob’s Diffie-Hellman public key.
She then computes H(gx) herself, to compare it against what Bob sent.
By completing her side of the Diffie-Hellman exchange (s = (gx)y),
she derives the same keys: c, c′,m1,m

′
1,m2,m

′
2. Using m2, she can

verify Mm2(Ec(XB)). Once that message is verified, she can safely
decrypt it using her computed c.

She can then also compute MB = Mm1(g
x, gy, pB, iB), and ver-

ifies that it is the same as Bob sent. By verifying the signed portion
S(pB,MB) against Bob’s public key, she has now unambiguously tied
the current interaction to Bob’s long-term authentication key.

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 208

She then computes the same values Bob computed to tie his long-
term key to the short-term handshake, so that Bob can also authenticate
her. She chooses an identification number iA for her current DH
keypair (y, gy), computes MA = Mm′

1
(gy, gx, pA, iA) and XA =

pA, iA, S(pA,MA). Finally, she sends Bob Ec′(XA),Mm′
2
(Ec(XB)).

Authenticating Alice

Now Bob can also authenticate Alice, again by mirroring steps. First,
he verifies Mm′

2
(Ec(XB)). This allows him to check that Alice saw the

same XB he sent.
Once he decrypts Ec′(XA), he has access to XA, which is Al-

ice’s long-term public key information. He can then compute MA =

Mm′
1
(gy, gx, pA, iA) to compare it with the version Alice sent. Finally,

he verifies S(pA,MA) with Alice’s public key.

What have we accomplished?

If all checks succeed then Alice and Bob have completed an authenti-
cated Diffie-Hellman exchange and have a shared secret that only the
two of them know.

Now that you’ve seen both sides of the authenticated handshake,you
can see why so many different keys are derived from the Diffie-Hellman
secret. Keys marked with a prime (′) are for messages originating from
the second peer (the one responding to the advertisement, in our case,
Alice); keys without a prime are for the initiating peer (in our case,
Bob).

CHAPTER 17. OFF-THE-RECORD MESSAGING (OTR) 209

17.3 Data exchange

TODO: Explain (https://otr.cypherpunks.ca/Protocol-v3-4.0.
0.html), #33

https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html

Part IV

Appendices

210

A

Modular arithmetic

Modular arithmetic is used for many public key cryptosystems, in-
cluding public-key encryption algorithms like RSA and key exchange
protocols like Diffie-Hellman.

Modular arithmetic is something most people actually already un-
derstand, they just don’t know it’s called that. We can illustrate the
principles of modular arithmetic using a clock.

For simplicity’s sake, our demonstration 12-hour clock only shows
hours, not minutes or seconds. Also unlike real clocks, the hour hand
is never halfway in between two hours: it always shows an exact hour,
such as 2 or 9.

211

APPENDIX A. MODULAR ARITHMETIC 212

Figure A.1: A clock, pointing to 2.

A.1 Addition and subtraction

It obviously makes sense to add hours on our clock: if it’s 2 o’clock now,
and you’d like to know what time it is five hours from now, you can add
5, and end up with 7, as you can see in figure A.2 on page 212.

Figure A.2: 2 + 5 = 7, on the clock.

APPENDIX A. MODULAR ARITHMETIC 213

Similarly, we can subtract times. If it’s 10 o’clock now, and you’d
like to know what time it was two hours ago, you subtract 2 and end
up with 8.

Figure A.3: 10− 2 = 8, on the clock.

The ”weird” part is when you cross the boundary at 12. As far as
the clock is concerned, there’s no real difference between 12 and 0. If
it’s 10 o’clock now, it’ll be 2 o’clock in four hours. If it’s 2 o’clock now,
it was 9 o’clock five hours ago.

This is an example of what’s called ”modular arithmetic”. The
modulus, in this case, is 12. We can write the above equations as:

(10 + 4) mod 12 = 2

(2− 5) mod 12 = 9

In these equations, the mod is an operator, giving the remainder
after division. When we are dealing with modular arithmetic, where
all operations are affected by the modulus instead of a simple single
operation, we’ll instead write (mod 12) at the end of the equation and
use an ≡ sign instead of an equals sign (=):

APPENDIX A. MODULAR ARITHMETIC 214

10 + 4 ≡ 2 (mod 12)

2− 5 ≡ 9 (mod 12)

This is read as ”ten plus four is equivalent to two, modulo twelve”
and ”two minus five is equivalent to nine, modulo twelve”. That might
seem like a trivial notational hack now, but the difference will become
apparent once we start applying tricks for doing more complex modular
computations, like multiplication and exponentiation.

In general, we call two numbers equivalent modulo some modulus
if dividing them by the modulus leaves the same remainder. We can
illustrate this with our previous examples: 10+4 = 14 leaves a remain-
der of 2 when divided by 12, so it is equivalent to 2 modulo 12. For
negative numbers, we’ll always use positive remainders. For example,
2− 5 ≡ 9 (mod 12). This is exactly the way a clock works as well: if
it’s 2 o’clock now, then five hours ago was ”nine o’clock”, not ”minus
three o’clock”.

A.2 Prime numbers

Prime numbers are wonderful kinds of numbers that come back in many
branches of mathematics. Anything I say about them probably won’t do
them justice; but we’re in a practical book about applied cryptography,
so we’ll only see a few properties.

A prime number is a number that is divisible only by two numbers:
1 and itself. For example, 3 is a prime number, but 4 is not, because it
can be divided by 2.

APPENDIX A. MODULAR ARITHMETIC 215

Any number can be written as a product of prime factors: a bunch
of prime numbers multiplied together. That product is called a prime
factorization. For example, 30 can be factorized into 2, 3 and 5:

30 = 2 · 3 · 5

Sometimes, a prime number will occur more than once in a factor-
ization. For example, the factorization of 360 has 2 in it three times,
and three in it twice:

360 = 23 · 32 · 5

The factorization of any prime number is just that prime number
itself.

Modern mathematics no longer considers 1 to be a prime number,
even though it is only divisible by 1 and itself (1 again). Under this
convention, every number not only has a factorization, but that factor-
ization is unique. Otherwise, 4 could be factored not only as 2 · 2, but
also as 2 · 2 · 1, 2 · 2 · 1 · 1, and so on. The uniqueness of factorization
helps in some important proofs in number theory.

Also, 0 is not a prime number, as it is divisible by many numbers:
all numbers except 0 itself.

Two numbers are called coprime when their greatest common
divisor is 1, or, to put it in another way, they don’t share any prime
factors. Since the only prime factor a prime has is itself, that means
that all prime numbers are also coprime. More generally, a prime is
coprime to any number that isn’t a multiple of that prime.

APPENDIX A. MODULAR ARITHMETIC 216

A.3 Multiplication

You might remember you were first taught multiplication as repeated
addition:

n · x = x+ x+ . . .+ x︸ ︷︷ ︸
n times

Modular multiplication is no different. You can compute modular
multiplication by adding the numbers together, and taking the modulus
whenever the sum gets larger than the modulus. You can also just do
regular multiplication, and then take the modulus at the end.

A.4 Division and modular inverses

Division is defined as the inverse of multiplication. So, a · b ≡ c

(mod m), then c
b ≡ a (mod m).

For example, 5 · 6 ≡ 2 (mod 7); so: 2
6 ≡ 5 (mod 7). This is

because 5 · 6 = 30, which leaves a remainder of 2 when divided by 7.
Usually, instead of using division directly, we’ll multiply using some-

thing called a modular inverse. The modular inverse of a is a number,
that when you multiply it with a, you get 1. This is just like the inverse
of a number in regular arithmetic: x · 1

x = 1.
Like in regular arithmetic, not all numbers have modular inverses.

This is the equivalent of dividing by zero in regular arithmetic.
There are two algorithms that are used to compute modular inverses:

the extended Euclidean algorithm, and with the help of Euler’s theorem.

APPENDIX A. MODULAR ARITHMETIC 217

The extended Euclidean theorem

TODO: explain, and how you can get modular inverses with it

Using Euler’s theorem

Euler’s theorem states that if two numbers a and n are coprime, then:

aφ(n) ≡ 1 (mod n)

In that equation, φ is Euler’s totient function, which counts the
amount of numbers that are coprime to (and less than or equal to) its
argument. As an example, the totient of 10 is 4, as 1, 3, 7, and 9 do not
have common prime factors with 10.

We can use Euler’s theorem to find the multiplicative inverse of a.
If we just multiply both sides of the equation by a−1, we get:

aφ(n)−1 ≡ a−1 (mod n)

That gives us a direct formula for computing a−1. Unfortunately,
this is still generally less interesting than using the extended Euclidean
algorithm, for two reasons:

1. It requires computing the totient function, which is harder than
running the extended Euclidean algorithm in the first place,
unless you happen to know the prime factors of n.

2. Modular exponentiation is computationally expensive.

One exception to that rule is for prime moduli. Since a prime is
coprime to every other number, and since there are p − 1 numbers

APPENDIX A. MODULAR ARITHMETIC 218

smaller than p, φ(p) = p− 1. So, for a prime modulus, the modular
inverse of a is simply:

a−1 ≡ aφ(p)−1 ≡ ap−2 (mod p)

This still requires us to be able to efficiently raise a to a power using
modular arithmetic. We’ll discuss how you can do that efficiently in
the next section.

A.5 Exponentiation

Like multiplication is taught as repeated addition, exponentiation can
be thought of as repeated multiplication:

an = a · a · . . . · a︸ ︷︷ ︸
n times

As with multiplication, it’s possible to compute modular expo-
nentiation by performing regular exponentiation, and then taking the
modulus at the end. However, this is very inefficient, particularly for
large n: the product quickly becomes far too large.

Fortunately, it is possible to compute modular exponentiation much
more efficiently. This is done by splitting the problem up into smaller
sub-problems. For example, instead of computing 220 directly you
could split it up:

220 = (210)2

210 is something you can compute on your hands: start at 2, which
is 21, and then keep multiplying by two. Every time you multiply by

APPENDIX A. MODULAR ARITHMETIC 219

two, the exponent goes up by 1, so by the time you’ve counted all your
fingers (assuming you have ten of them), you’re done. The result is 1024.
So:

220 ≡ (210 mod 15)2 (mod 15)

≡ (1024 mod 15)2 (mod 15)

≡ 42 (mod 15)

≡ 16 (mod 15)

≡ 1 (mod 15)

A.6 Exponentiation by squaring

A particularly efficient way to do it on computers is splitting the ex-
ponent up into a sum of powers of two. This is called exponentiation
by squaring, or sometimes also binary exponentiation. Suppose we
want to compute 3209 (mod 19). First, we split up 209 into a sum
of powers of two. This process is essentially just writing 209 down in
binary: 0b11010001. That’s very practical if the computation is being
performed by a computer, because that’s typically how the computer
had the number stored in the first place.

209= 1 · 27 +1 · 26 +0 · 25 +1 · 24 +0 · 23 +0 · 22 +0 · 21 +1 · 20

= 1 · 128+1 · 64+0 · 32+1 · 16+0 · 8 +0 · 4 +0 · 2 +1 · 1
= 128 +64 +16 +1

We use that expansion into a sum of powers of two to rewrite the
equation:

APPENDIX A. MODULAR ARITHMETIC 220

3209 = 3128+64+16+1

= 3128 · 364 · 316 · 31

Now, we need to compute those individual powers of 3: 1, 16, 64
and 128. A nice property of this algorithm is that we don’t actually
have to compute the big powers separately from scratch. We can use
previously computed smaller powers to compute the larger ones. For
example, we need both 3128 (mod 19) and 364 (mod 19), but you can
write the former in terms of the latter:

3128 mod 19 = (364 mod 19)2 (mod 19)

Let’s compute all the powers of 3 we need. For sake of brevity, we
won’t write these out entirely, but remember that all tricks we’ve already
seen to compute these still apply:

316 ≡ 17 (mod 19)

364 ≡ (316)4 ≡ 174 ≡ 16 (mod 19)

3128 ≡ (364)2 ≡ 162 ≡ 9 (mod 19)

Filling these back in to our old equation:

3209 = 3128 · 364 · 316 · 31 (mod 19)

≡ 9 · 16 · 17 · 3 (mod 19)

This trick is particularly interesting when the exponent is a very
large number. That is the case in many cryptographic applications.

APPENDIX A. MODULAR ARITHMETIC 221

For example, in RSA decryption, the exponent is the private key d,
which is usually more than a thousand bits long. Keep in mind that
this method will still leak timing information, so it’s only suitable for
offline computation. Modular exponentiation can also be computed
using a technique called a Montgomery ladder, which we’ll see in the
next section.

Many programming languages provide access to specific modular
exponentiation functions. For example, in Python, pow(e, x, m) per-
forms efficient modular exponentiation. However, the expression (e

** x) % m will still use the inefficient method.

A.7 Montgomery ladder exponentiation

As we mentioned before, the exponentiation by squaring algorithm
is simple and fast, but the time it takes to complete depends on the
value of the exponent. That’s bad, because the exponent is usually a
secret value, such as a Diffie-Hellman secret or the private exponent d
in RSA.

The Montgomery ladder is an algorithm that resolves this by guar-
anteeing the same number of operations irrespective of the particular
value of the exponent. It was originally applied for efficient scalar mul-
tiplications over elliptic curves, but the mathematics works for many
other systems: specifically, for any abelian group. [27]

APPENDIX A. MODULAR ARITHMETIC 222

Deriving the ladder

This is an optional, in-depth section. It almost certainly
won’t help you write better software, so feel free to skip
it. It is only here to satisfy your inner geek’s curiosity.

This section involves a good deal of arithmetic
tricks. You might want to get out some paper and pencil to follow
along.

Like with exponentiation by squaring, we start by looking at the binary
expansion of the exponent k. Generally, any k can be written as a sum
(
∑

) of some powers of two (2i). If 2j appears in the binary expansion,
we’ll say that kj = 1; if it doesn’t, we’ll say that kj = 0. That gives us:

k =

t−1∑
i=0

2iki

That definition might look scary, but all you’re really doing here is
defining ki as bit of k at position i. The sum goes over all the bits: if k
is t bits long, and we start indexing at 0, the index of the highest bit
is t− 1, and the index of the lowest bit is 0. For example, the binary
expansion of the number 6 is 0b110. That number is three bits long, so
t = 3. So:

APPENDIX A. MODULAR ARITHMETIC 223

6 =

t−1∑
i=0

2iki

=

2∑
i=0

2iki

= k2 · 22 + k1 · 21 + k0 · 20

= 1 · 22 + 1 · 21 + 0 · 20

So, (k2, k1, k0) = (1, 1, 0).
The next few steps don’t make a lot of sense until you see them

come together at the end, so bear with me and check that the math
works out. We’ll define a related sum, Lj :

Lj =
t−1∑
i=j

2i−jki

For example, L1 (still with k = 6) becomes:

L1 =
2∑

i=1

2i−1ki

= 21 · k2︸ ︷︷ ︸
i=2

+20 · k1︸ ︷︷ ︸
i=1

= 2 · 1 + 1 · 1

= 3

Essentially, Lj is just k shifted to the right by j bits. Shifting to the
right by one bit is the same thing as flooring division by two, just like

APPENDIX A. MODULAR ARITHMETIC 224

right-shifting by a decimal digit is the same thing as flooring division by
10. For example: 73, shifted one decimal digit to the right is 7; 0b101
(5) shifted one binary digit (bit) to the right is 0b10 (2). Analogously,
shifting left is the inverse operation, and is equivalent to multiplying by
two.

Next, we’ll perform a little arithmetical hocus pocus. First of all:

Lj = 2 · Lj+1 + kj

While you can verify this arithmetically, the easiest way to check
this is to think of it in terms of right and left shifts. If you shift k to
the right by j positions, that

k = 0b110010111

Lj = L2 = 0b1100101

Lj+1 = L3 = 0b110010

2 · Lj+1 = 2 · L3 = 0b1100100

You can visually verify that L2 is indeed L3, shifted one to the left
(which is the same thing as multiplying by two), plus that one bit kj
that ”fell off ” when shifting right. kj is the last bit of Lj ; in this case it
happens to be 1, but it could equally well have been 0.

We define another very simple function Hj :

Hj = Lj + 1 ⇐⇒ Lj = Hj − 1

Starting from our previous result:

APPENDIX A. MODULAR ARITHMETIC 225

Lj = 2 · Lj+1 + kj

⇓ (Lj+1 = Hj+1 − 1)

Lj = Lj+1 + kj +Hj+1 − 1

⇓ (Lj+1 = Hj+1 − 1)

Lj = 2 ·Hj+1 + kj − 2

We can combine these to produce an inductive way to compute Lj

and Hj :

Lj =

2Lj+1 if kj = 0,

Lj+1 +Hj+1 if kj = 1.

Hj =

Lj+1 +Hj+1 if kj = 0,

2Hj+1 if kj = 1.

Remember that we’re doing this to compute gk. Let’s write the
exponentiation out:

gLj =

g2Lj+1 =
(
gLj+1

)2 if kj = 0,

gLj+1+Hj+1 = gLj+1 · gHj+1 if kj = 1.

gHj =

gLj+1+Hj+1 = gLj+1 · gHj+1 if kj = 0,

g2Hj+1 =
(
gHj+1

)2 if kj = 1.

Remember that Lj is k right-shifted by j bits, so L0 is k shifted
right by 0 bits, or just k itself. That means gk, the number we’re trying
to compute, is the same thing as gL0 . By starting at gLt−1 (g raised to

APPENDIX A. MODULAR ARITHMETIC 226

the power of the leftmost bit of k) and iteratively making our way down
to gL0 = gk, we have an elegant inductive method for computing gk

based on two simple recursive rules.
The important part about this algorithm is the constant number of

operations. If kj = 0, computing gLj involves one squaring and gHj

involves one multiplication; if kj = 1, it’s the other way around. No
matter what any of the bits of k are, you need one squaring operation
and one multiplication per bit.

Implementing the Montgomery ladder in Python

The Python implementation of this algorithm, applied to modular
exponentiation, is surprisingly terse:

def montgomery(x, exponent, modulus):

x1, x2 = x, x ** 2

high_bit, *remaining_bits = bits(exponent)

for bit in remaining_bits:

if bit == 0:

x2 = x1 * x2

x1 = x1 ** 2

else:

x1 = x1 * x2

x2 = x2 ** 2

x1, x2 = x1 % modulus, x2 % modulus

return x1

This code block doesn’t show the definition of bits: it produces
the binary expansion of its argument. Python doesn’t provide that by

APPENDIX A. MODULAR ARITHMETIC 227

default; bin is close, but that produces a string: bin(100) evaluates to
0b1100100. The a, *b = bits(...) construct assigns the first item in
bits(...) to a, and all remaining bits to b, effectively just skipping
the first bit.

The important thing to note here is that no matter what the partic-
ular value of the exponent is, there is one squaring, one multiplication,
and one modulo operation per bit. Keep in mind that this doesn’t
necessarily make the entire algorithm take constant time, because the
individual squaring and multiplication operations are not necessarily
constant time.

A.8 Discrete logarithm

Just like subtraction is the inverse of addition, and division is the inverse
of multiplication, logarithms are the inverse of exponentiation. In
regular arithmetic, bx = y, if x = logb y. This is pronounced ”b raised
to the power x is y”, and ”the logarithm of y with respect to b is x”. The
equivalent of this in modular arithmetic is called a ”discrete logarithm”.

As with division, if you start from the definition as the inverse
of a different operator, it’s easy to come up with examples. For ex-
ample, since 36 ≡ 9 (mod 15), we can define 6 ≡ log3 9 (mod 15).
Unlike modular inverses, computing discrete logarithms is generally
hard. There is no formal proof that computing discrete logarithms is
intrinsically complex; we just haven’t found any efficient algorithms
to do it. Because this field has gotten extensive research and we still
don’t have very fast general algorithms, we consider it safe to base the
security of protocols on the assumption that computing discrete logs is
hard.

APPENDIX A. MODULAR ARITHMETIC 228

There is one theoretical algorithm for computing discrete loga-
rithms efficiently. However, it requires a quantum computer, which is a
fundamentally different kind of computer from the classical computers
we use today. While we can build such computers, we can only build
very small ones. The limited size of our quantum computers strongly
limits which problems we can solve. So far, they’re much more in the
realm of the kind of arithmetic a child can do in their head, than ousting
the top of the line classical computers from the performance throne.

The complexity of computing discrete logarithms, together with
the relative simplicity of computing its inverse,modular exponentiation,
is the basis for many public key cryptosystems. Common examples
include the RSA encryption primitive, and the Diffie-Hellman key
exchange protocol.

While cryptosystems based on the discrete logarithm problem are
currently considered secure with appropriate parameter choices, there
are certainly ways that could change in the future. For example:

• Theoretical breakthroughs in number theory could make discrete
logarithms significantly easier to compute than we currently
think.

• Technological breakthroughs in quantum computing could lead
to large enough quantum computers.

• Technological breakthroughs in classical computing as well as
the continuous gradual increases in performance and decreases in
cost could increase the size of some problems that can be tackled
using classical computers.

APPENDIX A. MODULAR ARITHMETIC 229

Discrete logarithm computation is tightly linked to the problem
of number factorization. They are still areas of active mathematical
research; the links between the two problems are still not thoroughly
understood. That said, there are many similarities between the two:

• Both are believed to be hard to compute on classical computers,
but neither has a proof of that fact.

• They can both be efficiently computed on quantum computers
using Shor’s algorithm.

• Mathematical advances in one are typically quickly turned into
mathematical advances in the other.

A.9 Multiplicative order

Given integer a and positive integer b with gcd(a, b) = 1, the multi-
plicative order of a (mod b) is the smallest positive integer k such that
ak = 1 (mod b).

B

Elliptic curves

Like modular arithmetic, elliptic curve arithmetic is used for many
public key cryptosystems. Many cryptosystems that traditionally work
with modular arithmetic, such as Diffie-Hellman and DSA, have an
elliptic curve counterpart.

Elliptic curves are curves with the following form:

y2 = x3 − ax+ b

This is called the ”short Weierstrass form”, and is the most common
form when talking about elliptic curves in general. There are several
other forms which mostly have applications in cryptography, notably
the Edwards form:

x2 + y2 = 1 + dx2y2

230

APPENDIX B. ELLIPTIC CURVES 231

We can define addition of points on the curve.
TODO: Move the Abelian group thing somewhere else, since it

applies to our fields thing as well
All of this put together form something called an Abelian group.

That’s a scary-sounding mathematical term that almost everyone already
understands the basics of. Specifically, if you know how to add integers
(. . .− 2,−1, 0, 1, 2, . . .) together, you already know an Abelian group.
An Abelian group satisfies five properties:

1. If a and b are members of the Abelian group and ? is the operator,
then a ? b is also a member of that Abelian group. Indeed, any
two integers added together always get you another integer. This
property is called closure, or, we say that the group is closed under
addition (or whatever the name is of the operation we’ve defined).

2. If a, b and c are members of the Abelian group, the order of
operations doesn’t matter; to put it differently: we can move the
brackets around. In equation form: (a ? b) ? c = a ? (b ? c).
Indeed, the order in which you add integers together doesn’t
matter; they will always sum up to the same value. This property
is called associativity, and the group is said to be associative.

3. There’s exactly one identity element i, for which a?i = i?a = a.
For integer addition, that’s zero: a+ 0 = 0 + a = a for all a.

4. For each element a, there’s exactly one inverse element b, for
which a ? b = b ? a = i, where i is the identity element. Indeed,
for integer addition, a+ (−a) = (−a) + a = 0 for all a.

APPENDIX B. ELLIPTIC CURVES 232

5. The order of elements doesn’t matter for the result of the op-
eration. For all elements a, b, a ? b = b ? a. This is known as
commutativity, and the group is said to be commutative.

The first four properties are called group properties and make some-
thing a group; the last property is what makes a group Abelian.

We can see that our elliptic curve, with the point at infinity and
the addition operator, forms an Abelian group:

1. If P and Q are two points on the elliptic curve, then P +Q is
also always a point on the curve.

2. If P , Q, and R are all points on the curve, then P + (Q+R) =

(P +Q) +R, so the elliptic curve is associative.

3. There’s an identity element, our point at infinity O. For all points
on the curve P , P +O = O + P = P .

4. Each element has an inverse element. This is easiest explained
visually TODO: Explain visually

5. The order of operations doesn’t matter, P +Q = Q+ P for all
P,Q on the curve.

B.1 The elliptic curve discrete log problem

TODO: explain fully
As with the regular discrete log problem, the elliptic curve discrete

log problem doesn’t actually have a formal proof that the operation is

APPENDIX B. ELLIPTIC CURVES 233

”hard” to perform: we just know that there is no publicly available algo-
rithm to do it efficiently. It’s possible, however unlikely, that someone
has a magical algorithm that makes the problem easy, and that would
break elliptic curve cryptography completely. It’s far more likely that
we will see a stream of continuous improvements, which coupled with
increased computing power eventually eat away at the security of the
algorithm.

C

Side-channel attacks

C.1 Timing attacks

AES cache timing

http://tau.ac.il/~tromer/papers/cache.pdf

Elliptic curve timing attacks

TODO: Explain why the edwards form is great?

C.2 Power measurement attacks

TODO: Say something here.

234

http://tau.ac.il/~tromer/papers/cache.pdf

Bibliography

[1] Specification for the Advanced Encryption Standard (AES).
Federal Information Processing Standards Publication 197,
2001. http://csrc.nist.gov/publications/fips/fips197/

fips-197.pdf. 37

[2] NIST special publication 800-38d: Recommendation for
block cipher modes of operation: Galois/Counter Mode
(GCM) and GMAC, November 2007. http://csrc.nist.gov/
publications/nistpubs/800-38D/SP-800-38D.pdf. 146

[3] Nadhem AlFardan, Dan Bernstein, Kenny Paterson, Bertram
Poettering, and Jacob Schuldt. On the security of RC4 in TLS
and WPA. http://www.isg.rhul.ac.uk/tls/. 81

[4] Ross Anderson and Serge Vaudenay. Minding your p’s and
q’s. In In Advances in Cryptology - ASIACRYPT’96, LNCS 1163,
pages 26–35.Springer-Verlag, 1996. http://www.cl.cam.ac.uk/
~rja14/Papers/psandqs.pdf. 105

235

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.isg.rhul.ac.uk/tls/
http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf
http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf

BIBLIOGRAPHY 236

[5] Mihir Bellare. New proofs for NMAC and HMAC: Security
without collision-resistance, 2006. http://cseweb.ucsd.edu/

~mihir/papers/hmac-new.html. 135

[6] Mihir Bellare and Chanathip Namprempre. Authenticated
encryption: Relations among notions and analysis of the
generic composition paradigm, 2007. http://cseweb.ucsd.edu/
~mihir/papers/oem.pdf. 129

[7] Mihir Bellare and Phillip Rogaway. Optimal Asymmetric Encryp-
tion – How to encrypt with RSA. Advances in Cryptology - EURO-
CRYPT ’94 - Lecture Notes in Computer Science, 950, 1995. http:
//www-cse.ucsd.edu/users/mihir/papers/oae.pdf. 106

[8] D. J. Bernstein. Snuffle 2005: the Salsa20 encryption function.
http://cr.yp.to/snuffle.html#speed. 84

[9] Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovra-
tovich, and Adi Shamir. Key recovery attacks of practical com-
plexity on AES variants with up to 10 rounds. Cryptology ePrint
Archive, Report 2009/374, 2009. http://eprint.iacr.org/

2009/374. 37

[10] Alex Biryukov and Dmitry Khovratovich. Related-key cryptanaly-
sis of the full AES-192 and AES-256. Cryptology ePrint Archive,
Report 2009/317, 2009. http://eprint.iacr.org/2009/317.
37

[11] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and
Phillip Rogaway. RFC 4418: UMAC: Message Authentica-

http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://cseweb.ucsd.edu/~mihir/papers/hmac-new.html
http://cseweb.ucsd.edu/~mihir/papers/oem.pdf
http://cseweb.ucsd.edu/~mihir/papers/oem.pdf
http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf
http://www-cse.ucsd.edu/users/mihir/papers/oae.pdf
http://cr.yp.to/snuffle.html#speed
http://eprint.iacr.org/2009/374
http://eprint.iacr.org/2009/374
http://eprint.iacr.org/2009/317

BIBLIOGRAPHY 237

tion Code using Universal Hashing. https://www.ietf.org/

rfc/rfc4418.txt. 141

[12] John Black, Shai Halevi, Hugo Krawczyk, Ted Krovetz, and
Phillip Rogaway. UMAC: Fast and Secure Message Authenti-
cation, 1999. http://www.cs.ucdavis.edu/~rogaway/papers/

umac-full.pdf. 141

[13] Dan Boneh. Twenty years of attacks on the RSA cryptosystem.
Notices of the AMS, 46:203–213, 1999. http://crypto.stanford.
edu/dabo/papers/RSA-survey.pdf. 105

[14] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-
record communication, or, why not to use PGP. https://otr.

cypherpunks.ca/otr-wpes.pdf. 203

[15] Daniel R. L. Brown and Kristian Gjøsteen. A security analysis
of the nist sp 800-90 elliptic curve random number generator.
Cryptology ePrint Archive, Report 2007/048, 2007. http://

eprint.iacr.org/2007/048.pdf. 171

[16] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES
— the Advanced Encryption Standard. Springer-Verlag, 2002. 37

[17] Wei Dai. Crypto++ 5.6.0 benchmarks. http://www.cryptopp.

com/benchmarks.html. 43, 73, 84, 102

[18] Bert den Boer and Antoon Bosselaers. Collisions for the
compression function of MD5. In Tor Helleseth, editor, Ad-
vances in Cryptology - EUROCRYPT 1993, volume 765 of
Lecture Notes in Computer Science, pages 293–304, Lofthus,N,

https://www.ietf.org/rfc/rfc4418.txt
https://www.ietf.org/rfc/rfc4418.txt
http://www.cs.ucdavis.edu/~rogaway/papers/umac-full.pdf
http://www.cs.ucdavis.edu/~rogaway/papers/umac-full.pdf
http://crypto.stanford.edu/dabo/papers/RSA-survey.pdf
http://crypto.stanford.edu/dabo/papers/RSA-survey.pdf
https://otr.cypherpunks.ca/otr-wpes.pdf
https://otr.cypherpunks.ca/otr-wpes.pdf
http://eprint.iacr.org/2007/048.pdf
http://eprint.iacr.org/2007/048.pdf
http://www.cryptopp.com/benchmarks.html
http://www.cryptopp.com/benchmarks.html

BIBLIOGRAPHY 238

1993. https://www.cosic.esat.kuleuven.be/publications/

article-143.pdf. 112

[19] T. Dierks and E. Rescorla. RFC 5246: The transport layer security
(TLS) protocol, version 1.2. https://tools.ietf.org/html/

rfc5246. 186

[20] Niels Ferguson and Bruce Schneier. A cryptographic evaluation
of ipsec, 1999. https://www.schneier.com/paper-ipsec.pdf.
129

[21] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the
key scheduling algorithm of RC4. pages 1–24, 2001. http://www.
wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps. 79

[22] SciEngines GmbH. Break DES in less than a single day,
2008. http://www.sciengines.com/company/news-a-events/

74-des-in-1-day.html. 41

[23] J. Hodges,C. Jackson, and A. Barth. RFC 6797: Http strict trans-
port security (HSTS). https://tools.ietf.org/html/rfc6797.
196

[24] S. Hollenbeck. RFC 3749: Transport layer security protocol
compression methods. https://tools.ietf.org/html/rfc3749.
192

[25] R. Housley. RFC 5652: Cryptographic message syntax (CMS).
https://tools.ietf.org/html/rfc5652#section-6.3. 63

[26] National Institute for Standards and Technology. Sp800-
57: Recommendation for key management – part 1: General

https://www.cosic.esat.kuleuven.be/publications/article-143.pdf
https://www.cosic.esat.kuleuven.be/publications/article-143.pdf
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://www.schneier.com/paper-ipsec.pdf
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps
http://www.wisdom.weizmann.ac.il/~itsik/RC4/Papers/Rc4_ksa.ps
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html
https://tools.ietf.org/html/rfc6797
https://tools.ietf.org/html/rfc3749
https://tools.ietf.org/html/rfc5652#section-6.3

BIBLIOGRAPHY 239

(revised). http://csrc.nist.gov/publications/nistpubs/

800-57/sp800-57_part1_rev3_general.pdf. 97

[27] Marc Joye and Sung-Ming Yen. The montgomery powering lad-
der, 2002. http://cr.yp.to/bib/2003/joye-ladder.pdf. 221

[28] Andreas Klein. Attacks on the RC4 stream cipher. Des. Codes
Cryptography, 48(3):269–286, September 2008. http://cage.

ugent.be/~klein/papers/RC4-en.pdf. 80

[29] Hugo Krawczyk. The order of encryption and authentication for
protecting communications (or: How secure is SSL?), 2001. http:
//www.iacr.org/archive/crypto2001/21390309.pdf. 129

[30] Hugo Krawczyk. Cryptographic extraction and key deriva-
tion: The HKDF scheme. Cryptology ePrint Archive, Report
2010/264, 2010. http://eprint.iacr.org/2010/264. 158, 160

[31] Hugo Krawczyk and Pasi Eronen. RFC 5869: HMAC-based
extract-and-expand key derivation function (HKDF). https:

//tools.ietf.org/html/rfc5869. 158, 160, 162

[32] RSA Laboratories. What key size should be used? http:

//www.emc.com/emc-plus/rsa-labs/standards-initiatives/

key-size.htm. 97

[33] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding
x.509 certificates. Cryptology ePrint Archive, Report 2005/067,
2005. http://eprint.iacr.org/2005/067. 112, 113

http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf
http://cr.yp.to/bib/2003/joye-ladder.pdf
http://cage.ugent.be/~klein/papers/RC4-en.pdf
http://cage.ugent.be/~klein/papers/RC4-en.pdf
http://www.iacr.org/archive/crypto2001/21390309.pdf
http://www.iacr.org/archive/crypto2001/21390309.pdf
http://eprint.iacr.org/2010/264
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/key-size.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/key-size.htm
http://www.emc.com/emc-plus/rsa-labs/standards-initiatives/key-size.htm
http://eprint.iacr.org/2005/067

BIBLIOGRAPHY 240

[34] Moxie Marlinspike. The cryptographic doom prin-
ciple, 2011. http://www.thoughtcrime.org/blog/

the-cryptographic-doom-principle/. 129

[35] Joshua Mason, Kathryn Watkins, Jason Eisner, and Adam Stub-
blefield. A natural language approach to automated cryptanalysis
of two-time pads. In Proceedings of the 13th ACM conference on
Computer and Communications Security, CCS ’06, pages 235–244,
New York, NY, USA, 2006. ACM. http://www.cs.jhu.edu/

~jason/papers/mason+al.ccs06.pdf. 28

[36] Elke De Mulder, Michael Hutter, Mark E. Marson, and Peter
Pearson. Using Bleichenbacher’s solution to the hidden number
problem to attack nonce leaks in 384-bit ECDSA. Cryptology
ePrint Archive, Report 2013/346, 2013. http://eprint.iacr.

org/2013/346.pdf. 154

[37] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the
Digital Signature Algorithm with partially known nonces. Journal
of Cryptology, 15:151–176, 2000. ftp://ftp.ens.fr/pub/dmi/

users/pnguyen/PubDSA.ps.gz. 151

[38] Philip Rogaway. OCB - An Authenticated-Encryption
Scheme - Licensing. http://www.cs.ucdavis.edu/~rogaway/

ocb/license.htm. 145

[39] Somitra Kumar Sanadhya and Palash Sarkar. New collision at-
tacks against up to 24-step SHA-2, 2008. http://eprint.iacr.
org/2008/270. 116

http://www.thoughtcrime.org/blog/the-cryptographic-doom-principle/
http://www.thoughtcrime.org/blog/the-cryptographic-doom-principle/
http://www.cs.jhu.edu/~jason/papers/mason+al.ccs06.pdf
http://www.cs.jhu.edu/~jason/papers/mason+al.ccs06.pdf
http://eprint.iacr.org/2013/346.pdf
http://eprint.iacr.org/2013/346.pdf
ftp://ftp.ens.fr/pub/dmi/users/pnguyen/PubDSA.ps.gz
ftp://ftp.ens.fr/pub/dmi/users/pnguyen/PubDSA.ps.gz
http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://www.cs.ucdavis.edu/~rogaway/ocb/license.htm
http://eprint.iacr.org/2008/270
http://eprint.iacr.org/2008/270

BIBLIOGRAPHY 241

[40] Berry Schoenmakers and Andrey Sidorenko. Cryptanalysis of the
dual elliptic curve pseudorandom generator, 2006. http://www.
cosic.esat.kuleuven.be/wissec2006/papers/21.pdf. 171

[41] Marc Stevens, Pierre Karpman, and Thomas Peyrin. Freestart
collision for full SHA-1. Cryptology ePrint Archive, Report
2015/967, 2015. http://eprint.iacr.org/2015/967. 114

[42] S.Turner and T. Polk. RFC 6176: Prohibiting secure sockets layer
(SSL) version 2.0. https://tools.ietf.org/html/rfc6176.
188

[43] Serge Vaudenay. Security flaws induced by CBC padding applica-
tions to SSL, IPSec,WTLS... http://www.iacr.org/cryptodb/
archive/2002/EUROCRYPT/2850/2850.pdf. 129

[44] Xiaoyun Wang, Hongbo Yu, Wei Wang, Haina Zhang, and Tao
Zhan. Cryptanalysis on HMAC/NMAC-MD5 and MD5-
MAC. In Advances in Cryptology - EUROCRYPT 2009, 28th An-
nual International Conference on the Theory and Applications of Cryp-
tographic Techniques, volume 5479 of Lecture Notes in Computer
Science, pages 121–133, 2009. http://www.iacr.org/archive/

eurocrypt2009/54790122/54790122.pdf. 113

http://www.cosic.esat.kuleuven.be/wissec2006/papers/21.pdf
http://www.cosic.esat.kuleuven.be/wissec2006/papers/21.pdf
http://eprint.iacr.org/2015/967
https://tools.ietf.org/html/rfc6176
http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf
http://www.iacr.org/archive/eurocrypt2009/54790122/54790122.pdf
http://www.iacr.org/archive/eurocrypt2009/54790122/54790122.pdf

Glossary

A | B | C | E | G | I | K | M | N | O | P | S

A

AEAD mode

Class of block cipher modes of operation that provides authen-
ticated encryption, as well as authenticating some unencrypted
associated data. 142, 143, 146, 241, 244, 246

asymmetric-key algorithm

See public-key algorithm. 241, 246

asymmetric-key encryption

See public-key encryption. 241

B

block cipher

Symmetric encryption algorithm that encrypts and decrypts
blocks of fixed size. 30, 241, 242

242

GLOSSARY 243

C

Carter-Wegman MAC

Reusable message authentication code scheme built from a one-
time MAC. Combines benefits of performance and ease of use.
140, 146, 241, 244

CBC mode

Cipher block chaining mode; common mode of operation where
the previous ciphertext block is XORed with the plaintext block
during encryption. Takes an initialization vector, which assumes
the role of the “block before the first block”. 53, 59, 64, 88, 241,
244

cross-site request forgery

Kind of attack where a malicious website tricks the browser
into making requests to another website. Can be prevented by
properly authenticating requests instead of relying on ambient
authority such as session cookies. 193, 241, 250

CTR mode

Counter mode; a nonce combined with a counter produces a
sequence of inputs to the block cipher; the resulting ciphertext
blocks are the keystream. 85–87, 241, 244

E

ECB mode

Electronic code book mode; mode of operation where plaintext
is separated into blocks that are encrypted separately under the

GLOSSARY 244

same key. The default mode in many cryptographic libraries,
despite many security issues. 46, 49, 52, 53, 130, 241

encryption oracle

An oracle that will encrypt some data. 49, 53, 241

G

GCM mode

Galois counter mode; AEAD mode combining CTR mode with
a Carter-Wegman MAC. 241, 244

GMAC

Message authentication code part of GCM mode used separately.
146, 241

I

initialization vector

Data used to initialize some algorithms such as CBC mode. Gen-
erally not required to be secret, but required to be unpredictable.
Compare nonce, salt. 54, 55, 87, 241, 245, 247, 251

K

key agreement

See key exchange. 241

GLOSSARY 245

key exchange

The process of exchanging keys across an insecure medium using
a particular cryptographic protocol. Typically designed to be
secure against eavesdroppers. Also known as key agreement.
211, 241, 244, 246

keyspace

The set of all possible keys. 31, 241

M

message authentication code

Small piece of information used to verify authenticity and in-
tegrity of a message. Often called a tag. 241, 243, 244, 246

mode of operation

Generic construction that encrypts and decrypts streams, built
from a block cipher. 43, 53, 85, 86, 241, 242

N

nonce

N umber used once. Used in many cryptographic protocols. Gen-
erally does not have to be secret or unpredictable, but does have
to be unique. Compare initialization vector, salt. 80, 86, 87, 151,
241, 243, 244, 247

O

GLOSSARY 246

OCB mode

Offset codebook mode; high-performance AEAD mode, unfor-
tunately encumbered by patents. 241

one-time MAC

Message authentication code that can only be used securely for
a single message. Main benefit is increased performance over
re-usable MACs. 241, 243

oracle

A “black box” that will perform some computation for you. 49,
241, 244

OTR messaging

Off-the-record messaging, messaging protocol that intends to
mimic the properties of a real-live private conversation. Piggy-
backs onto existing instant messaging protocols. 241

P

public-key algorithm

Algorithm that uses a pair of two related but distinct keys. Also
known as asymmetric-key algorithms. Examples include public-
key encryption and most key exchange protocols. 101, 241, 242

public-key encryption

Encryption using a pair of distinct keys for encryption and de-
cryption. Also known as asymmetric-key encryption. Contrast

GLOSSARY 247

with secret-key encryption. 31, 100–102, 108, 148, 200, 211,
241, 242, 246, 247

S

salt

Random data that is added to a cryptographic primitive (usually
a one-way function such as a cryptographic hash function or a
key derivation function) Customizes such functions to produce
different outputs (provided the salt is different). Can be used
to prevent e.g. dictionary attacks. Typically does not have to be
secret, but secrecy may improve security properties of the system.
Compare nonce, initialization vector. 118, 156, 158, 160, 241,
244, 245

secret-key encryption

Encryption that uses the same key for both encryption and de-
cryption. Also known as symmetric-key encryption. Contrast
with public-key encryption. 31, 100, 101, 241, 247, 248

stream cipher

Symmetric encryption algorithm that encrypts streams of arbi-
trary size. 23, 53, 71, 73, 83, 85, 241

substitution-permutation network

Generic design for block ciphers where the block is enciphered
by repeated substitutions and permutations. 38, 241

GLOSSARY 248

symmetric-key encryption

See secret-key encryption. 31, 45, 241

Acronyms

A | B | C | D | F | G | H | I | K | M | O | P | R | S

A

AEAD

Authenticated Encryption with Associated Data. 142–144, 241

AES

Advanced Encryption Standard. 36, 204, 241

AKE

authenticated key exchange. 205, 241

B

BEAST

Browser Exploit Against SSL/TLS. 55, 241

C

249

ACRONYMS 250

CBC

cipher block chaining. 241

CDN

content distribution network. 195, 241

CSPRNG

cryptographically secure pseudorandom number generator. 241

CSRF

cross-site request forgery. 193, 195, 241

D

DES

Data Encryption Standard. 41, 171, 241

F

FIPS

Federal Information Processing Standards. 37, 41, 241

G

GCM

Galois Counter Mode. 241

H

ACRONYMS 251

HKDF

HMAC-based (Extract-and-Expand) Key Derivation Function.
158, 241

HMAC

Hash-based Message Authentication Code. 134, 159, 170, 241

HSTS

HTTP Strict Transport Security. 195, 241

I

IV

initialization vector. 54, 87, 241

K

KDF

key derivation function. 241

M

MAC

message authentication code. 125, 241, 246

MITM

man-in-the-middle. 99, 241

O

ACRONYMS 252

OCB

offset codebook. 143, 241

OTR

off-the-record. 203, 241

P

PRF

pseudorandom function. 241

PRNG

pseudorandom number generator. 241

PRP

pseudorandom permutation. 241

R

RSA

Rivest Shamir Adleman. 171, 190, 211, 221, 241

S

SMP

socialist millionaire protocol. 205, 241

	Contents
	Foreword
	About this book
	Advanced sections
	Development
	Acknowledgments

	Building blocks
	Exclusive or
	Description
	A few properties of XOR
	Bitwise XOR
	One-time pads
	Attacks on "one-time pads"
	Remaining problems

	Block ciphers
	Description
	AES
	DES and 3DES
	Remaining problems

	Stream ciphers
	Description
	A naive attempt with block ciphers
	Block cipher modes of operation
	CBC mode
	Attacks on CBC mode with predictable IVs
	Attacks on CBC mode with the key as the IV
	CBC bit flipping attacks
	Padding
	CBC padding attacks
	Native stream ciphers
	RC4
	Salsa20
	Native stream ciphers versus modes of operation
	CTR mode
	Stream cipher bit flipping attacks
	Authenticating modes of operation
	Remaining problems

	Key exchange
	Description
	Abstract Diffie-Hellman
	Diffie-Hellman with discrete logarithms
	Diffie-Hellman with elliptic curves
	Remaining problems

	Public-key encryption
	Description
	Why not use public-key encryption for everything?
	RSA
	Elliptic curve cryptography
	Remaining problem: unauthenticated encryption

	Hash functions
	Description
	MD5
	SHA-1
	SHA-2
	Password storage
	Length extension attacks
	Hash trees
	Remaining issues

	Message authentication codes
	Description
	Combining MAC and message
	A naive attempt with hash functions
	HMAC
	One-time MACs
	Carter-Wegman MAC
	Authenticated encryption modes
	OCB mode
	GCM mode

	Signature algorithms
	Description
	[org57dc272]RSA-based signatures
	DSA
	ECDSA
	Repudiable authenticators

	Key derivation functions
	Description
	Password strength
	PBKDF2
	bcrypt
	scrypt
	HKDF

	Random number generators
	Introduction
	True random number generators
	Cryptographically secure pseudorandom generators
	Yarrow
	Blum Blum Shub
	Dual_EC_DRBG
	Mersenne Twister

	Complete cryptosystems
	SSL and TLS
	Description
	Handshakes
	Certificate authorities
	Self-signed certificates
	Client certificates
	Perfect forward secrecy
	Attacks
	HSTS
	Certificate pinning
	Secure configurations

	OpenPGP and GPG
	Description
	The web of trust

	Off-The-Record Messaging (OTR)
	Description
	Key exchange
	Data exchange

	Appendices
	Modular arithmetic
	Addition and subtraction
	Prime numbers
	Multiplication
	Division and modular inverses
	Exponentiation
	Exponentiation by squaring
	Montgomery ladder exponentiation
	Discrete logarithm
	Multiplicative order

	Elliptic curves
	The elliptic curve discrete log problem

	Side-channel attacks
	Timing attacks
	Power measurement attacks

	Bibliography
	Glossary
	Acronyms

